

Pedro Luis Sobral Escada

Indicadores de Gestão de Estoques na Petrobras

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Industrial da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia de Produção.

Orientador: Prof. Antonio Fernando de Castro Vieira

Rio de Janeiro Dezembro de 2012

Pedro Luis Sobral Escada

Dissertação apresentada como requisito parcial para obtenção do título de Mestre (opção profissional) pelo Programa de Pós-graduação em Engenharia Industrial da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Antonio Fernando de Castro Vieira Orientador e Presidente Departamento de Engenharia Industrial – PUC-Rio

Prof. José Eugênio Leal Departamento de Engenharia Industrial – PUC-Rio

Prof. Luiz Henrique Abreu Dal Bello Centro Tecnológico do Exército

Prof. José Eugênio LealCoordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 04 de dezembro de 2012.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pedro Luis Sobral Escada

Graduou-se em Administração pela Universidade Estadual Paulista na UNESP-Araraquara em 1995, Pós-Graduado em gestão pela FAAP e Pós-Graduado em Logística Empresarial na FGV-Rio. Atua, desde então, na área de orientação e logística de estoques e armazenagem na indústria do petróleo como administrador pleno, e desde 2012 exerce o cargo de consultor em logística na Petróleo Brasileiro S.A. Petrobras".

Escada, Pedro Luís Sobral

Gestão de estoques: indicadores de estoques na Petrobras / Pedro Luís Sobral Escada; orientador: Antonio Fernando C. Vieira. – 2012.

92 f.: il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Industrial, 2012.

Inclui bibliografia

1. Engenharia Industrial – Teses. 2. Logística. 3. Gestão de estoques. 4. Indicadores de desempenho. I. Vieira, Antonio Fernando C. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

CDD: 658.5

Agradecimentos

Agradeço primeiramente a Deus, por me dar o dom da vida, a saúde física e intelectual para cumprir meus aprendizados me inspirando nos momentos mais difíceis desta jornada.

A minha esposa, a escritora Kelem Zapparoli, ao me apoiar e incentivar, me assistindo ao longo da vida para o meu crescimento pessoal e profissional.

À minha família, que sempre me mostrou o caminho e me deu as condições para me tornar uma pessoa que luta por seus ideais e apoiando-me em todos momentos de minha existência.

Aos colegas de trabalho, Luiz Cláudio Pinheiro e Luiz Fernando Novaes, ao me auxiliarem na extração dos dados para este estudo e debateram comigo sobre a gestão dos estoques à luz dos indicadores de desempenho.

Ao Professor Doutor Antonio Miguel Vieira Monteiro pela *The University* of Sussex at Brighton e membro do CTC – Conselho Cientifico do Instituto Nacional de Pesquisas Especiais – INPE - , pelo apoio e força nos momentos mais difíceis deste estudo.

Ao Professor Doutor Antonio Fernando C Vieira, ao me orientar neste trabalho.

A Professora de redação empresarial e amiga, Raquel Bahiense, pela correção desta dissertação e pelo carinho infindável.

E por fim, e não menos importante, aos colegas de mestrado, Ayres, Marco Antonio e Ubiratan, ao me incentivarem em nossos inúmeros estudos de sábados e domingos. Muitos desses, abençoados pelo almoço da Dona Dida, esposa do amigo Bira.

Resumo

Escada, Pedro Luís Sobral; Vieira, Antonio Fernando de Castro (Orientador). **Indicadores de Gestão de Estoques na Petrobras**. Rio de Janeiro, 2012. 92p. Dissertação de Mestrado (Opção profissional) - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Este estudo tem como foco evidenciar que há meios para melhorar a competitividade da Petrobras utilizando-se de processos potencializados pelas novas tecnologias associadas aos conceitos de controle preexistentes como os indicadores de desempenho e a difusão destes dados por toda Companhia. Com uma gestão planejada, focada na otimização de recursos e apoiada em dados mostra-se a possibilidade de apoiar as decisões na gestão da cadeia de suprimentos (Supply Chain Management) que passa a ter um papel determinante na integração de processos, desde os fornecedores iniciais até os consumidores finais, em um modelo de negócio harmônico e de alto desempenho. Seu objetivo é agregar o maior valor possível ao consumidor. Neste estudo utiliza-se o estudo da logística de estoques de materiais focado no balanceamento do Trade off (perdas compensatórias): Nível de serviço versus capital de giro, otimizando recursos financeiros e potencializando ao máximo o nível de serviço. Trata-se de um estudo de caso apoiado pelo método de Painel de Consenso, focada na opinião de especialistas, apoiada em sistemas informatizados, sem o qual não seria possível chegar às conclusões indicadas.

Palavras-chave

Indicadores; Gestão de Estoques; Inventário.

Abstract

Escada, Pedro Luís Sobral; Vieira, Antonio Fernando de Castro (Advisor). **Inventory Management Indicators in Stock Petrobras**. Rio de Janeiro, 2012. 92p. MSc Dissertation (Opção profissional) - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

This study focuses on evidence that there are ways to improve the competitiveness of Petrobras using processes augmented by new technologies associated with the concepts of control as pre-existing performance indicators and dissemination of such information throughout Cia With a planned management, focused on resource optimization and supported by data showing the possibility of supporting the decisions in supply chain management – SCM which is replaced by a decisive role in the integration process, from initial suppliers to final consumers, business model in a harmonic and high performance. His goal is to add the most value to the consumer. This study uses the study of logistics inventory of materials focused on balancing the Trade off (loss allowances): Service Level versus working capital, optimizing and leveraging financial resources to the maximum level of service. This is a case study method supported by Consensus Panel, focused on expert opinion, supported by computerized systems, without which it would be possible to reach the conclusions stated.

Keywords

Key Performance Indicators (KPI, Manager of Stocks, Inventory).

Sumário

1. Introdução	11
2. Referencial Teórico	18
2.1. Estoques	18
2.2. Indicadores de Desempenho	36
2.3. Integração da Cadeia Logistíca	49
3. Proposta Metodológica	54
4. Estudo De Caso	65
4.1. Unidade Fabril do Estudo de Caso – Refinaria Henrique Lage -	
REVAP	65
4.2. Indicadores na Revap do Grupo de Mercadorias - 40142101	73
4.2.1. Acurácia	73
4.2.2. Nível de Serviço (Fill Rate)	75
4.2.3. Giro dos Estoques	77
4.2.4. Cobertura	82
4.2.5. ROA	83
4.3. Indicadores Corporativos	84
4.3.1. IEEP - REVAP	84
5. Conclusões	85
6. Referências Bibliográficas	89

LISTA DE FIGURAS

Figura 1 – Deposito de químicos – UO-RNCE-Mossoro – RGN	12
Figura 2 – Cadeia de Suprimentos	14
Figura 3 – Campos do Pré-Sal	15
Figura 4 – Tipos de Estoques	19
Figura 5 – Tipo de demandas	21
Figura 6 – Demandas utilizadas como referência pela Petrobras	22
Figura 7 – Gráfico baseado nas teorias de demanda	23
Figura 8 – Gráfico baseado nas teorias de demanda	24
Figura 9 – Gráfico baseado nas teorias de demanda	24
Figura 10 – Associação das demandas aos MRP	26
Figura 11 – Classificação ABC	29
Figura 12 – Tamanho do lote	32
Figura 13 – Linha Básica	51
Figura 14 – Integração Fincional	51
Figura 15 – Integração Interna	52
Figura 16 – Integração externa	52
Figura 17 – Grupo de Mercadoria 40142101	56
Figura 18 – Inicio da obras da REVAP	66
Figura 19 – Refinaria do Vale do Paraíba, REVAP	66
Figura 20 – Gráfico, Estoques X Tempo	68
Figura 21 – Gráfico, Estoques X Tempo	69
Figura 22 – Gráfico, Estoques X Tempo	70
Figura 23 – Gráfico	76

LISTA DE TABELAS

Tabela 1 – Métodos de previsão qualitativos	25
Tabela 2 – Custos de Estoques e Armazenagem	30
Tabela 3 – Associação dos indicadores aos seus processos	37
Tabela 3 – Parâmetros de escolha de um objeto de estudo	55
Tabela 4 – Materiais incluídos no grupo de mercadorias 40142101	57
Tabela 5 – Classificação ABC dos grupos de mercadoria na Petrobras	60
Tabela 6 – Classificação ABC dos grupos de mercadoria no REFINO	61
Tabela 7 – Classificação ABC dos grupos de mercadoria na REVAP	62
Tabela 8 – Grupo de indicadores para uso na Petrobras	64
Tabela 9 – Códigos dos movimentos do SAP R / 3 que podem ser	
utilizados em estoques	71
Tabela 10 – Códigos dos movimentos do SAP R / 3 que evideciam o	
consumo de materiais dos estoques	72
Tabela 11 – Códigos dos movimentos do SAP R / 3 que evideciam o	
consumo e a devolução de materiais aos estoques	72
Tabela 12 – classe A – classificação ABC do grupo de mercadoria	
40142101	73
Tabela 13 – Giro dos materiais classe A do GM 40142101 na REVAP -	-
considerando a soma dos valores em estoques	79
Tabela 14 – Giro dos materiais classe A do GM 40142101 na REVAP -	-
considerando a movimentação do último período em análise	80
Tabela 15 – Giro dos materiais classe A do GM 40142101 na REVAP -	-
considerando a movimentação mês a mês	80
Tabela 16 – – Giro dos matérias classe A com base no último mês da	
análise	81

"Ninguém educa ninguém, Ninguém educa a si mesmo. Os homens se educam entre si mediatizados pelo mundo".

Paulo Freire - Filósofo e Educador

1

Introdução

No cenário econômico mundial atual, as empresas brasileiras e as estrangeiras estão compelidas a serem mais competitivas ¹ para se manterem no mercado globalizado.

Esta Globalização incrementou o fluxo comercial devido a aproximação dos mercados, potencializados pela queda das barreiras alfandegárias estreitando as relações comerciais.

A globalização, segundo Friedman (1999), é uma vertente da fragmentação da política bipolar (comunistas *versus* capitalistas), mas a popularização deste termo ocorreu em meados de 1980, e passou a ser associado aos aspectos financeiros inerentes a esse processo. A integração decorrente da globalização ocorreu em razão de dois fatores: das inovações tecnológicas e do incremento no fluxo comercial mundial.

Essas inovações tecnológicas, principalmente nas telecomunicações e na informática, promoveram a difusão de informações entre as empresas e instituições financeiras, ligando os mercados no mundo.

O incremento do fluxo comercial se deu pela aproximação dos mercados, também potencializados pela queda das barreiras alfandegárias permitindo o estreitamento das relações comerciais entre países e empresas. As multinacionais ou transnacionais contribuíram para a efetivação do processo de globalização, tendo em vista que essas empresas desenvolvem atividades em diferentes territórios.

¹ A noção mais simples, implícita em grande parte dos textos, associa competitividade ao desempenho das exportações industriais. Trata-se de um conceito fundamentalmente objetivo e factual, que avalia a competitividade através de seus efeitos sobre o comércio externo: são competitivas as indústrias que ampliam sua participação na oferta internacional de determinados produtos. Além de ser quase intuitivo, a vantagem deste conceito está na facilidade de construção de indicadores, argumento utilizado, por exemplo, por Gonçalves (1987) na análise das exportações brasileiras. É ainda o conceito mais amplo de competitividade, abrangendo não só as condições de produção como todos os fatores que inibem ou ampliam as exportações de produtos e/ou países específicos, como as políticas cambial e comercial, a eficiência dos canais de comercialização e dos sistemas de financiamento, acordos internacionais (entre países ou empresas), estratégias de firmas transnacionais, etc. (HAGUENAUER, 1989).

Com isso a gestão da cadeia de suprimentos (Supply Chain Management- SCM) passou a ter papel mais relevante na relação das empresas, pois trata-se da administração orientada para a integração entre os processos de negócios existentes e os elementos de uma cadeia logística, desde os fornecedores iniciais até os consumidores finais, em um modelo de negócio harmônico e de alto desempenho;

Depósito de Químicos - UO-RNCE-Mossoró - RGN Fonte: MATERIAIS/OGBS/ESAR, Petrobras, (2010)

Figura 1 – Depósito de químicos – UO-RNCE-Mossoró – RGN Fonte: MATERIAIS/OGBS/ESAR, (O AUTOR, 2012).

Neste contexto, para aferir o desempenho de uma empresa, uma possibilidade é focar na sua cadeia de suprimentos.

Contudo, como focar na cadeia de suprimentos?

Identificando as áreas inerentes à cadeia de suprimentos e as relacionadas à logística (Planejamento e Controle da Produção – PCP, Estoques e Armazéns e Transportes).

Porque focar na cadeia de suprimentos?

Para que se possa medir o desempenho de cada área dentro da cadeia visando sua otimização e uma melhoria dos indicadores de desempenho.

A medição de desempenho de uma empresa é aferida com apoio de indicadores de performance que mensuram e monitoram ao longo do processo a melhor aplicação dos recursos de uma empresa dentre os quais destacamos os estoques.

A aplicação destes recursos em estoques está intimamente relacionada ao entendimento da demanda no processo produtivo, permitindo um balanceamento mais apurado no *Trade off* (perdas compensatórias): Nível de Serviço versus Capital de Giro.

Na Figura 2, pode-se verificar quais as áreas inerentes à cadeia de suprimentos e as relacionadas à logística (Planejamento e Controle da Produção – PCP, Estoques e Armazéns e Transportes) para que se possa medir o desempenho de cada área na cadeia.

Otimizar e balancear estoques requer tomada de decisões, que por sua vez precisam estar apoiados em instrumentos gerenciais de tal forma que se imobilize a menor quantidade possível de capital e ao mesmo tempo se possa atender o máximo de demandas da produção.

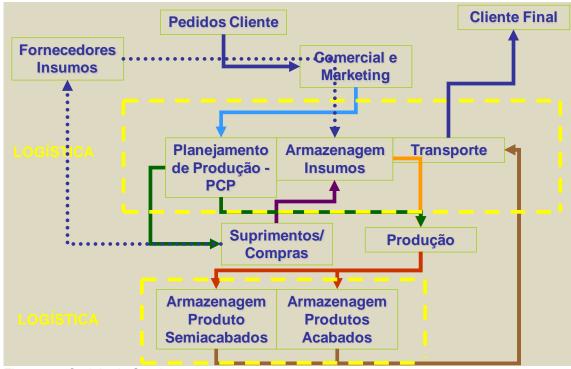


Figura 2 – Cadeia de Suprimentos

Fonte: O autor, (2012).

Quais são os Reflexos destes instrumentos gerenciais na Petrobras?

A Presidente da Petrobras, Maria das Graças Foster, afirmou, nesta semana, que a companhia não vai esperar um aumento dos preços dos derivados de petróleo no mercado interno para melhorar o seu fluxo de caixa, e por isso buscará operar de forma mais eficiente (PETROBRAS, 2012a).

O Procop - Programa de Otimização de Custos Operacionais, um dos programas estruturantes do Plano de Negócios 2012-2016, visa o aumento da formação de caixa, a produtividade e pretende reforçar o modelo de eficiência em custos. Afirmou a estatal em nota (PETROBRAS, 2012a):

O escopo do programa inclui as atividades no Brasil, nas áreas de exploração e produção, abastecimento e gás e energia, também atuando nos processos de suporte às operações, como suprimento de materiais, estoque de peças e combustíveis e tecnologia da informação.

Do total de R\$ 199 bilhões que constituíram a base de custos do produto vendido e despesas operacionais da companhia em 2011, a parcela de gastos gerenciáveis foi de R\$ 63 bilhões divididos em três grupos: operacional, gestão e suporte (G1, 2012).

Qual a motivação Profissional para este Estudo?

As recentes descobertas das reservas do Pré-sal, obrigam a Petrobras a repensar na produtividade, no modelo de eficiência em custos e nos processos de suporte às operações, como suprimento de materiais, estoque de peças.

No macro processo de MATERIAIS, se prevê a otimização de processos de compra de peças, padronização e simplificação da especificação de bens e **redução dos estoques**.

Novos campos de Petróleo: Pré -sal)

Figura 3 – Campos do Pré-Sal Fonte: Comunicação (PETROBRAS, 2011).

Há inúmeros estudos de ferramentas de apoio à decisão. No mercado podem-se encontrar alguns destes em utilização, mas quais são e como saber se estão adequados para a indústria em questão? Quais são os referenciais (melhores parâmetros) para cada um?

Para nortear esta pesquisa, identificaremos qual o papel dos estoques, quais os tipos e para que servem, e ainda quais os tipos de demandas e qual o objetivo de cada um. Ao verificar o que existe será feito uma busca de quais parâmetros assumidos pela empresa para suportar os gestores neste processo decisório.

Saber os tipos de estoques e de demanda não permite concluir se o caminho escolhido pelos gestores de estoques é aderente à filosofia da empresa e da produção. Ele é apenas um balisador. Para tanto, é necessário ter políticas claras de estoques, onde os parâmetros como estoque de segurança, ponto de pedido e estoque máximo estejam claramente definidos.

Por fim, ao levantar os dados de uma Unidade Operacional pretende-se apurar com a extração de dados quais são os balisadores mais adequados e as políticas associadas, neste tipo de empresa, para dar ao gestor de estoques a segurança de que o caminho escolhido é o mais adequado na otimização dos custos e de uma gestão de estoques balanceada.

Este estudo está dividido em cinco seções, sendo o primeiro introdução; o segundo o referencial teórico; o terceiro, a proposta metodológica; o quarto, o estudo de caso e o quinto, as conclusões. Para uma melhor visão de cada seção, segue abaixo uma pequena descrição dos assuntos inerentes a cada um:

Seção 1: Introdução: na busca por competitividade no mundo, por conta da globalização, evidencia-se a necessidade de redução de custos nas empresas apoiadas nas melhores práticas, baseados em planejamento e parâmetros que referenciem a boa gestão das empresas com a utilização de técnicas de comparação, benchmark. Com o cenário desenhado, o autor objetiva identificar quais são os indicadores são mais apropriados para esta leitura em relação as informações contidas na base de dados da empresa em questão.

Seção 2: A teoria dos autores mais renomados em gestão de estoques, a identificação de indicadores de mercado associados à gestão da cadeia de logística, permeia e fundamenta a necessidade de ferramentas de apoio à decisão para que se possam identificar formas de otimização dos custos em estoques frente às demandas. A qualificação das demandas, os tipos de estoque e de materiais nos permitem verificar como a gestão contemporânea trata desta questão imperativa nas organizações comerciais.

Seção 3: Conhecidos os indicadores e ferramentas de apoio à gestão, associados a proposta metodológica, busca-se identificar o Grupo de Mercadorias que melhor representa a complexidade dos insumos da Petrobras. Neste estudo vislumbra-se verificar como os dados se apresentam e é feito uma análise do seu desempenho quando aplicado aos indicadores tratados. Esta análise é apoiada no Princípio de Pareto, de tal forma que os materiais de maior relevância (alto valor financeiro), denominado itens CLASSE A são analisados. São itens estratégicos quanto às operações em todas áreas de negócio, mas não específicos, podendo ser substituídos por materiais com tecnologia mais avançada, evitando-se assim análises de materiais de demanda pontual e não contínua da operação.

Seção 4: É o estudo de caso que evidenciará quais os critérios de escolha da Unidade Operacional a ser estudada, bem como apontará os indicadores levantados na seção 3 na perspectiva desta Unidade e qual a possibilidade de uso destes indicadores frente às ferramentas sistêmicas disponíveis na empresa. Os indicadores serão apontados como balisadores para os gestores de estoques no que concerne à gestão de estoques e o planejamento com vistas e redução de custos de estocagem e armazenagem.

Seção 5: Conclusões.

Referencial Teórico

Nesta seção serão apresentados os conceitos básicos de estoques, tipos de demandas, indicadores, formas de integração da cadeia logística e os indicadores utilizados pela Petrobras.

2.1

Estoques

Nesta seção será abordado o papel dos estoques nas empresas, os tipos de estoques, bem como as demandas relacionadas ao consumo dos materiais, assim como as políticas de estoques preexistentes na empresa objeto do estudo. Identificar-se-ão os principais indicadores utilizados no mundo e quais os parâmetros para seu efetivo cálculo.

Mas, afinal, qual é a função dos estoques nas empresas? Segundo Martins e Alt (2003), os estoques funcionam como reguladores do fluxo de negócios de uma empresa; se as entradas são maiores que as saídas de materiais os estoques aumentam e se o contrário reduzem, os estoques funcionam como amortecedores de mercadorias (*buffer*).

Para Wanke (2003), a questão principal dos estoques é a busca para definir sobre o ponto ou nível de estoque e quando deve ser realizado um novo pedido de reposição, tal que os custos sejam minimizados e de forma a evitar faltas, mantendo o nível de serviço requerido. Retoma-se a necessidade de se identificar os tipos de demandas de cada material.

Para isso se faz necessário compreender qual o tipo de estoque e os tipos de materiais associados a estes estoques. Segundo Martins e Alt (2003) os estoques estão divididos em:

Estoques de matérias-primas: material destinado ao processo de transformação dentro de uma indústria, o qual se transformará em um

produto acabado. Podem ser vários materiais, que juntos irão agregar valor ao produto acabado final;

Estoques de materiais de uso ou auxiliar: materiais de apoio ao processo de transformação, embora não seja parte do produto final. É imprescindível seu uso para o processo de produção;

Estoques de materiais de manutenção: destinado à manutenção de maquinário ou patrimônio da empresa, como o edifício e instalações onde a empresa opera. Também faz parte deste tipo de material os insumos ou produtos de escritório, tais como canetas, papel, etc.;

Estoques de materiais intermediários: materiais que estão sendo processados ou que fazem parte do processo produtivo. São também conhecidos como peças em processo (WIP – work in process), sendo posteriormente transformados ou agregados para se chegar ao produto final. Esse tipo de material faz parte da etapa do processo de planejamento da produção;

Estoques de materiais acabados: materiais prontos, acabados, que se destinam aos clientes.

Os estoques acima descritos também podem ser segmentados, figura 2, segundo Slack, Chambers e Johnston (2002) e Meredith (1992) em:

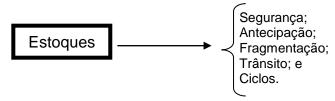


Figura 4 – Tipos de Estoques Fonte: O autor, (2012).

Estoque de proteção ou segurança: é um acréscimo ao estoque normal necessário para suprir as condições da demanda média e do prazo de entrega médio (BALLOU, 2006).

Estoque cíclico: é o estoque necessário para suprir a demanda média durante o tempo transcorrido entre sucessivos reabastecimentos, ele depende dos tamanhos do lote de produção, embarque de quantidades econômicas, limitações no espaço e no armazenamento, prazo de reposição, esquemas de descontos em preços por quantidades e custos de movimentação (BALLOU, 2006).

Estoque de antecipação: é o estoque usado para absorver taxas irregulares de demanda ou fornecimento, que a empresa frequentemente enfrenta (RITZMAN; KRAJEWSKI, 2004)

Estoque de canal ou em trânsito: são bens que estão em trânsito entre pontos de um sistema de distribuição ou entre postos de trabalho em uma fábrica (SLACK; CHAMBERS; JOHNSTON, 2002).

Estoque de fragmentação: é o usado para postergar a conclusão final de um produto ou de um equipamento enquanto não se tem as condições ideais para a utilização da associação dos componentes (MEREDITH, 1992).

Os estoques de segurança ou contra incertezas, citado anteriormente, são mantidos para estabelecer uma margem de segurança ao longo de cadeias de abastecimento e de forma a minimizar as incertezas associadas ao suprimento e/ou demanda, com o objetivo de garantir o funcionamento ininterrupto do processo produtivo. O estabelecimento dessa margem busca reduzir o risco que a empresa está disposta a assumir por causa da ocorrência de falta ou falha de estoque. O estoque de segurança em cada ponto de estocagem na cadeia de abastecimento depende da variabilidade da demanda da região que ele

atende, da incerteza existente em relação ao *lead time* e do nível de serviço desejado pela empresa.

Portanto, a aquisição destes materiais deve ter um planejamento prévio, de acordo com o seu consumo ou demanda. As demandas, por sua lei de formação, se dividem em duas: dependente e independente (figura 4).

Para Moreira (1999), as demandas dependentes são baseadas no consumo e podem ser programadas na empresa e as demandas independentes dependem das ações do mercado, ou seja, são exógenas às motivações de consumo.

De acordo com Bertaglia (2003), a demanda independente não é afetada pelas necessidades de produção; é gerada diretamente pelo consumidor ou cliente e a demanda dependente é determinada pelas decisões de produção e está vinculada a uma demanda independente.

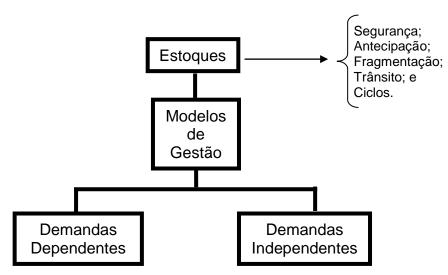


Figura 5 – Tipo de demandas Fonte: O autor, (2012).

A classificação das demandas, Figura 5, por seu tipo, conforme o Manual de Suprimentos de Materiais (MSM) da Petrobras são classificadas como:

DEMANDA PROGRAMADA (Dependente): demandas planejadas quanto as quantidades e prazos de utilização, vinculadas a programas específicos de operação, investimentos aprovados ou programas de manutenção (PETROBRAS, 2004);

DEMANDA PROBABILÍSTICA (Independente): demandas decorrentes da operação normal dos órgãos onde não são apresentadas alterações significativas de consumo na quantidade e frequência, sendo estimadas através de modelos estatísticos. A escolha do método de projeção a ser adotado resulta da análise do comportamento de série histórica de consumos, devendo ser observadas a regularidade, a tendência, a sazonalidade, etc (PETROBRAS, 2004);

DEMANDA INCERTA (Independente): demandas decorrentes de fatores de difícil previsão. Só devem ser formados estoques de materiais de demanda incerta quando caracterizada sua grande importância operacional e de segurança, além da impossibilidade de aguardar o processamento da compra, mesmo em caráter emergencial. Nos casos de necessidade de manutenção de um estoque, as quantidades são definidas com base na análise de (PETROBRAS, 2004):

- vida útil do material;
- informações dos usuários;
- informações do fabricante;
- importância operacional;
- experiência de operação de materiais similares;
- disponibilidade de mercado.

DEMANDA EVENTUAL (Independente): demandas decorrentes de necessidades específicas, cuja repetição não é prevista. Materiais de demanda eventual devem ser:

- objeto de aquisição específica, restrita à quantidade solicitada;
- entregues diretamente ao usuário, não sendo mantidos em estoque (PETROBRAS, 2004).

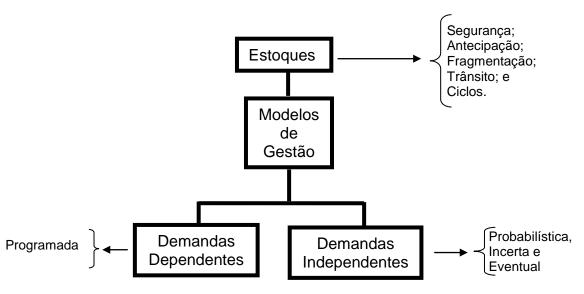
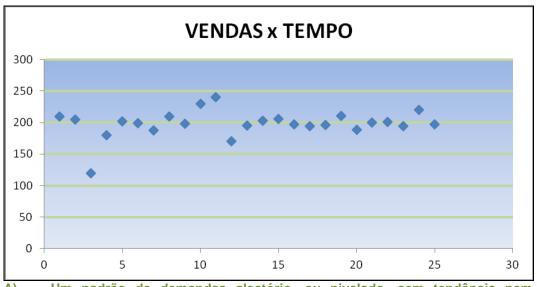
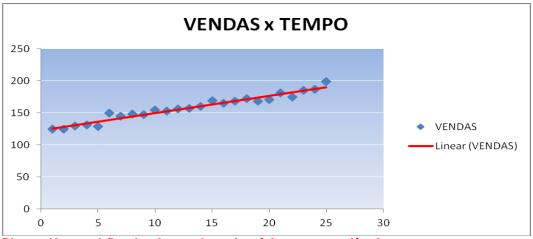



Figura 6 – Demandas utilizadas como referência pela Petrobras Fonte: O autor, (2012).

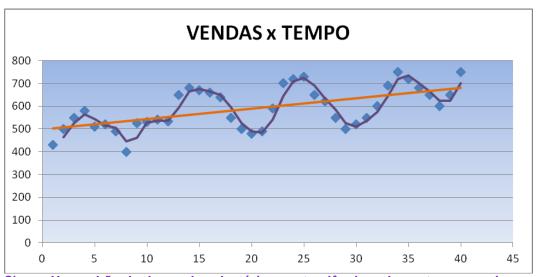
Conforme verificado anteriormente, há as demandas independentes e dependentes; a primeira, para situações de variações de mercado que envolvem procedimentos de previsões estatísticas e a segunda, voltada para demandas programadas de um modelo especifico de programação da produção, ambos necessários para a elaboração de um planejamento ou de previsões futuras. Pode-se dizer que as demandas dependentes podem ser planejadas, por se conhecer as necessidades de set-up das máquinas na produção.

Em ambos os casos há que se considerar aspectos como tempo, local onde a demanda irá se manifestar, que segundo Ballou (2006), são definidos como demandas temporal e espacial. A demanda temporal contribui no planejamento da frequência de consumo associado a outros fatores e a espacial contribui na decisão de alocação de um centro de distribuição ou uma planta industrial em função do consumo


Há ainda diferenças nas demandas como irregulares e regulares. As regulares são representadas da seguinte forma, Figuras, 7, 8 e 9:

A) Um padrão de demandas aleatório, ou nivelado, sem tendência nem elementos sazonais.

Figura 7 – Gráfico baseado nas teorias de demanda


Fonte: Ballou, (2006)

B) Um padrão de demandas aleatório com tendência crescente, mas sem elementos sazonais.

Figura 8 – Gráfico baseado nas teorias de demanda

Fonte: Ballou, (2006)

C) Um padrão de demandas aleatório com tendência e elementos sazonais. Tendência de Vendas

___ Venda de tendência e sazonais continuadas

Figura 9 – Gráfico baseado nas teorias de demanda

Fonte: Ballou, (2006)

Portanto, nas demandas regulares os padrões podem ser divididos em dois componentes de tendência: sazonais e aleatórios. As demandas irregulares ocorrem quando a demanda é intermitente, em função do baixo volume e da incerteza de quanto e quando o nível de demanda deverá ocorrer.

São vários os métodos de previsão disponíveis. De acordo com Fonte: Ballou, (2006), dividindo-se em três categorias:

a) **Qualitativos:** são de natureza não cientifica, o que dificulta a padronização. Recorrem a julgamentos, intuição, pesquisas ou técnicas comparativas para se obter estimativas quantitativas sobre o futuro. Futuro este de médio e longo prazo. Abaixo o exemplos de alguns na Tabela 1.

Tabela 1 – Métodos de previsão qualitativos

Método	Descrição	Horizonte de Previsão
Delphi	Um grupo de especialistas é interrogado em uma sequência de questionários em que suas respostas são usadas para produzir o questionário seguinte.	Médio-longo
Painel de Consenso ou de Especialistas	Considera a suposição que um grupo de especialistas pode chegar a uma resposta melhor que uma única pessoa.	Médio-longo
Pesquisa de Mercado	Levantamentos de dados através de questionários direcionados e entrevistas com possíveis consumidores.	Médio-longo

Fonte: Ballou, (2006)

- b) **De projeção histórica:** premissa desta série é o de um padrão de tempo futuro com repetição do passado, incentivando o uso de modelos estatísticos e matemáticos como fontes de previsão. Uma vez que a tendência e as variações nas séries de tempo são estáveis e bem definidas, torna-se uma maneira eficiente de previsão de curto prazo. O único óbice se dá quando ocorrem mudanças rápidas que só são identificadas após a sua ocorrência;
- c) Causais: premissa do método é de que o nível de variável de previsão é derivado do nível de outras variáveis relacionadas. A dificuldade é a de se identificar as variáveis verdadeiramente causais. Os modelos são estatísticos (no caso de regressão e econométrico) e descritivos (nos modelos de entrada e saída, ciclo de vida e simulação em computador).

Ballou (2006), diz que o profissional de logística não precisa preocupar-se com as técnicas de previsão e planejamento, porque estão associados às áreas de marketing, planejamento na área econômica

financeira. Entretanto, para o gestor de estoques de materiais da Petrobras, essa preocupação será permanente porque os aspectos de previsão não estão associados ao produto final. Portanto, o gestor de estoques terá esta incumbência dada que a natureza dos estoques não são materiais acabados, mas materiais auxiliares, de reparo e operação ou Material de Reparo e Operação - MRO - que sofrem desgaste no processo produtivo por fazerem parte dos equipamentos de produção e que por sua vez tem que assegurar a produção dos materiais acabados.

Se a projeção não é qualitativa, mas de projeção histórica e a base para este tipo de material tem um padrão de tempo futuro com repetição do passado, incentiva-se o uso de modelos estatísticos e matemáticos como fontes de previsão.

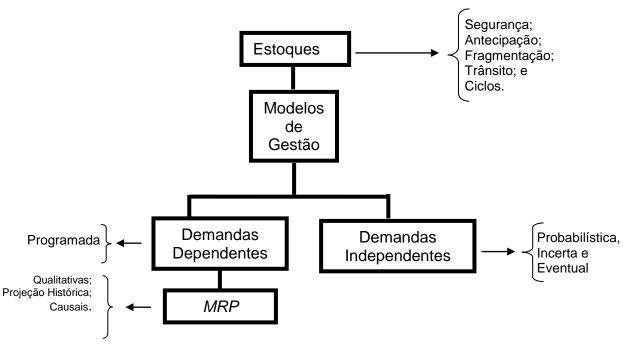


Figura 10 – Associação das demandas aos MRP Fonte: O autor, (2012).

Lustosa *et al.* (2008) afirma que o *MRP* está associado a demandas dependentes, Figura 8, sendo suas principais entradas no sistema as listas de materiais, a posição dos estoques (disponibilidade) e os prazos de montagem dos componentes, gerando na saída as ordens de produção e de compras para manter a produção. O *MRP* é alimentado pelo *MPS* – Programa Mestre de Produção – e na sua evolução considera

as necessidades de recursos de produção, mão de obra, disponibilidade de máquinas, etc.

Na medida em que uma empresa consegue identificar o comportamento dos consumos de seus produtos, prever os insumos e a quantidade de produtos acabados torna-se uma tarefa menos complexa ao se utilizar os métodos de previsão de demandas.

De acordo com Lambert, Stock e Vantine (1998) o MRP I é um sistema computadorizado de produção e controle de estoque cujo objetivo e otimizar os estoques, mantendo somente os materiais utilizados no processo de produção.

Suas principais funcionalidades são:

- A. Assegurar a disponibilidade de materiais, componentes e produtos de acordo com o planejamento e controle da produção (PCP);
- B. Manter o nível de estoques o mais baixo possível;
- C. Planejar as atividades de fabricação, cronograma de entrega e atividades de compra.

As desvantagens estão associadas à falta de otimização dos custos de aquisição de materiais, a maior frequência de compras em função dos estoques mínimos, com menores quantidades o que onera os custos de pedido. Consequentemente os custos de transporte e tributários também aumentam e o risco está também associado à parada da produção por falta de entrega de material.

O MRP II envolve todas as funções principais da empresa: engenharia, finanças, produção, logística e marketing, bem como o planejamento destas áreas.

Definida a demanda de um determinado material, as empresas têm que definir os métodos de aquisição e priorização dos materiais; não poderá tratar a reposição de um item de valor levado como mesmo critério na reposição de materiais de baixo valor como parafusos e arruelas. Do

contrário, os custos de aquisição e de controle dos estoques seriam exorbitantes.

A Petrobras utiliza o gerenciamento pelo **Perfil de MRP**. O perfil de MRP estabelece quando e quanto é necessário ressuprir um item, para atender uma necessidade. O Perfil de MRP estabelece uma relação entre o tipo de MRP e o tamanho do lote. São parâmetros definidos sistemicamente no Enterprise Resource Planning ou ferramenta de gestão de recursos, ERP - para fazer o ressuprimento de acordo com o tipo de material e utilização. Cada demanda recebe uma sigla (VV, VB, ZS e ZD) denominada Tipo MRP que evidencia a forma de reposição em função de sua demanda (Ex = Lote Exato, HB = Lote máximo ou MB = tamanho do lote). Definido o Perfil MRP associa-se a Classificação ABC para que se gerencie os materiais mais relevantes. A premissa da Classificação ABC é a Lei de Pareto, ao definir que 20% dos materiais de um determinado grupo representam 80% do valor do total destes materiais. Com esta forma de priorização identificam-se quais materiais devem ser tratados em primeiro, para que se faça uma melhor gestão dos recursos, otimizando custos, já que serão observados e cuidados inicialmente 20% dos materiais em valor.

Garcia et al (2006), retrata a Lei de Pareto ao descrever que a renda da população que está nas mãos de apenas 20% da população representa 80% da renda total, regra essa que ficou conhecida como 80/20. Portanto, a gestão dos estoques deverá estar direcionada aos materiais com base na maior demanda por *SKUs – Stock Keeping Units* ou Unidades de Manutenção de Estoque. Esta separação é feita com a representação relativa acumulada, onde a soma relativa de valor de cada *SKU* corresponde em até 75% do valor dos estoques, classificando-os como itens CLASSE A, itens CLASSE B correspondem a soma acumulada relativa de 75,01% à 95% dos valor dos itens e os 5% restantes correspondem aos valores dos itens CLASSE C, dando o nome desta separação em Classificação ABC, conforme figura 7. Evidencia-se com esta classificação que 80% dos itens de maior valor correspondem a

cerca de 20% dos itens (quantidade x valor) demandados e os 80% restantes representam os demais itens.

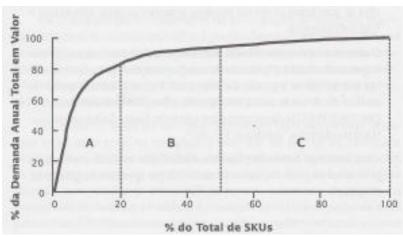


Figura 11 – Classificação ABC Fonte: Garcia et al. (2006).

Assim, fica mais fácil priorizar os materiais de maior relevância, quanto à manutenção dos custos destes materiais em estoque.

Na armazenagem, considera-se que o grande valor está concentrado no valor dos materiais em estoque, mas há outros fatores que contribuem para onerar a empresa e torná-la menos competitiva. São os custos, que nos itens CLASSE A (Classificação ABC), trarão a possibilidade de minimizá-los, itens estes de grande relevância pelo seu custo de aquisição, pelo custo de manutenção e pelo custo da falta.

De acordo com Ballou (2006), os custos de aquisição envolvem outros custos como: de processamento, preparação, transmissão, manutenção e pedido de compra. Nos custos de manutenção estão inseridos os custos de espaço, capital ou custo de oportunidade (taxa mínima de retorno sobre investimentos que a empresa aceita), de serviço de estocagem (seguros e encargos tributários) e de risco de estoque (deterioração, roubos, danos ou obsolescência). Tem-se também o Custo da Falta que considera as vendas perdidas e os pedidos em atraso. Ver Tabela 2.

Tabela 2 – Custos de Estoques e Armazenagem

Custos de Aquisição	Custos de Manutenção	Custo da Falta
Preparação Ttransmissão Manutenção	Custos de Espaço Custo de Capital ou Custo de Oportunidade Serviço de Estocagem - seguros e encargos tributários Risco de Estoque - deterioração, roubos, danos ou obsolescência	Vendas Perdidas Pedidos em Atraso

Fonte: O autor, (2012).

A Petrobras utiliza o método do custo médio para valorização dos estoques, que segundo Lambert, Stock & Vantine (1999) é a média flutuante dos valores dos materiais, no qual cada nova compra faz a média com os estoques existentes para se obter um novo preço médio, ou média ponderada, com o custo total do estoque em aberto mais todas as compras dividido pelo número total de unidades.

Apoiado em modelos estatísticos e matemáticos como modelos de previsão, identifica-se os existentes na Petrobras, se são modelos determinísticos ou modelos probabilísticos: Mas como diferenciá-los?

Garcia *et al.* (2006) introduz o conceito de modelos determinísticos como aqueles que não consideram incertezas, não consideram as variáveis aleatórias. Este modelo contribui para a gestão dos estoques no que diz respeito a avaliar *trade-offs* de custos existentes.

Para Garcia et al. (2006) um modelo probabilístico de estoque pode ser aplicado quando um pedido é colocado para atender a demanda em um determinado período, onde a demanda é uma variável aleatória e o pedido não tem influência sobre períodos subsequentes.

Os modelos determinísticos são de fácil implementação e utilização, por serem baseados em fórmulas analíticas simples e por isso de fácil parametrização em planilhas eletrônicas. São modelos como o Lote Econômico de Compras ou *Economic Order Quantity* (EOQ), onde a demanda e o *lead-time* são parâmetros determinísticos a decisão de quanto pedir acaba se tornando trivial onde o ponto de pedido é calculado como a demanda por unidade de tempo multiplicado pelo *lead-time*.

Segundo Slack, Chambers e Johnston (2002), a abordagem mais comum para decidir quanto pedir de um item, quando o estoque precisa de reabastecimento, é chamada abordagem do lote econômico de compra (EOQ). Essencialmente, essa abordagem tenta encontrar o melhor equilíbrio entre as vantagens e as desvantagens de manter estoque, gerando o lote a ser comprado que gera o menor custo total em relação aos estoques.

O Lote Econômico de Compra – LEC ou *EOQ – Economic Order Quantitity* objetiva encontrar a quantidade que minimiza o custo total.

Garcia *et al.* (2006) sustenta que as premissas da formulação clássica do *EOQ* são:

- 1. A demanda é determinística, constante e contínua;
- 2. O *lead-time* de ressuprimento é determinístico e constante;
- 3. Faltas de produtos e *backorders* (entregas com atraso) não são permitidas;
- 4. Custos de pedido e de estoque são independentes do tamanho da ordem (não existem, por exemplo, descontos por quantidade);
- 5. O pedido chega completo em um único instante de tempo;
- 6. Itens diversos são pedidos de forma independente, ou seja, não são considerados possibilidades de um pedido com vários itens:
- 7. Não existem restrições, como espaço de armazenagem e capacidade de transporte.

Em um cenário de tempo, demandas constantes e determinísticas, um novo ressuprimento pode ser calculado ao se multiplicar a demanda pelo tempo e termos a assim temos o Ponto de Pedido – PP. Mas quanto pedir?

Em Garcia et al. (2006), temos:

Considerando-se que altos estoques geram altos custos de armazenagem, dado por CE = Q/2. H (2.1.1), e vários pedidos ao longo do *lead time* geram custos de pedidos, dado por CP = $D/Q \cdot (F + Q \cdot v)$ (2.1.2), para:

CE = Custo de estoque por período;

CP = Custo de pedido por período;

Q = Tamanho do lote de ressuprimento (unidades);

h = Custo de manutenção dos estoques por unidade estocada por período:

D = Demanda por período;

F = Custo fixo incorrido por pedido realizado; v = Custo variável por unidade pedida.

CT = Custo Total

Sendo que o CT = CE + CP (2.1.3), desta forma podemos visualizar na figura 9 que quando o Custo dos Estoques cruzar com os Estoques de Pedidos, teremos um ponto onde o Custo Total será mínimio, identificando-se assim a quantidade e o número de pedidos a serem adquiridos. Assim, temos que EQQ = (2xDxF / h)-½ (2.1.4) (GARCIA et al., 2006).

Outros modelos além do Lote Econômico de Compra, segundo Garcia *et al.* (2006), são:

- a) Lote econômico de produção;
- b) Lote com descontos por quantidade;
- c) Lote com *backorder* permitido;
- d) Lote com inflação;
- e) Compra especulativa;
- f) Ressuprimento conjunto de múltiplos itens;
- g) Lote com restrições;
- h) Modelos com demanda variável no tempo;
- i) Modelo de Capacited Lot Sizing Problem CLSP;
- j) Modelo Aggregate Production Planning APP.

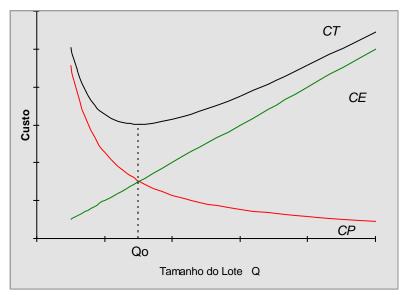


Figura 12 – Tamanho do lote Fonte: Ferreira Filho, (2010),

Na análise de sensibilidade do EOQ, verifica-se que erros de estimativa têm efeitos reduzidos no custo total resultante.

Martins e Alt (2003) consideram que incertezas existem em qualquer ambiente de negócios, e na logística não é diferente. Por isso, quando tratamos de estoques há que se pensar em estoques de segurança como uma maneira para atender a um aumento de demanda.

 $ES = Z\alpha \times S \times (TA)-\frac{1}{2}$ (2.1.5), sendo:

ES = Estoque de Segurança;

Zα = Nível de Atendimento da Distribuição Normal;

S = Desvio Padrão de Unidades no Período;

TA = Tempo de Atendimento (MARTINS; ALT, 2003).

Garcia et al. (2006), afirma que o objetivo de todo sistema de gestão dos de estoques é fornecer respostas para três questões básicas:

- 1. Qual a frequência de avaliação do nível de estoques?
- 2. Quando deve ser colocado um pedido de reposição?
- 3. Quantas unidades devem ser pedidas em cada ciclo de pedido ?

O lote econômico permite calcular quantas unidades deverão ser pedidas e quanto deve ser colocado no pedido de reposição, mas não diz a frequência de avaliação do nível dos estoques; esta frequência deve ser feita pelo gestor de estoques das Unidades. Os indicadores serão os balisadores desta frequência.

O nível dos estoques é auferido pelo inventário, pois evidenciará onde estão os desvios que precisam de gestão para que se alcance a redução dos níveis de estoques ao menor custo para a organização.

Neste caso, o inventário físico que para Martins e Alt (2003), é a contagem física dos itens de estoque e é feito de dois modos: periódico e rotativo ou contínuo.

Nos sistemas de revisão contínua, o nível de estoque é sempre conhecido como encomenda de quantidades fixas ou variáveis (quando o nível é fixo), e intervalo variável entre pedidos dado pelo ponto de encomenda.

Nos sistemas de revisão periódica o estoque é revisado (contado) a cada "X" unidades de tempo, com encomenda de quantidades variáveis suficientes para atingir um nível fixo, e intervalo fixo entre pedidos ou entre pedidos definido pelo ponto de encomenda com periodicidade fixa.

De acordo com o Manual de Suprimentos de Materiais - MSM da Petrobras, quando se trata de inventários, temos os sistemas de revisão e também o enquadramento dos tipos de estoques, que são:

Estoque a mão: quantidade de estoque que está fisicamente disponível no armazém, esta quantidade nunca é negativa e determina se a demanda de um cliente pode ser atendida diretamente. [...] Estoque líquido: quantidade teórica de estoques, criada para se poder manipular quantidades negativas de estoque, quando o cliente admite que seu pedido seja entregue a posteriori - encomenda. [...] Estoque líquido = Estoque a mão – encomendas [...] Estoque contábil: representa a quantidade de estoques levando em conta o disponível a mão, as encomendas e os pedidos já realizados. É o estoque utilizado para definir quando fazer um pedido. [...] Estoque contábil = Estoque a mão - encomendas + estoque em trânsito (PETROBRAS, 2004).

Outro parâmetro para avaliação dos estoques, segundo o MSM da Petrobras, é classificação quanto a sua utilização e consequentemente sua destinação. Para tanto, classificam-se os estoques como ativos e inativos.

- A. Ativos são os estoques resultantes de um planejamento prévio e destinado a uma utilização conhecida, podendo ser subclassificado em Específico, Consumo ou Especial.
- B. Inativos são os estoques sem perspectivas de utilização pelo Órgão detentor. Após realização das necessárias análises, pode ser subclassificado em Disponível, Alienável, Análise e a Recuperar (PETROBRAS, 2004).

Ainda de acordo com o MSM da Petrobras, há as subclassificações, quando serão definidos os destinos destes estoques:

 "Aplicação Específica: material destinado a atender a um programa de operação ou investimento aprovado ou manutenção preventiva, sendo sua demanda programada;

- II. **Consumo:** material destinado a garantir a continuidade operacional do Órgão, sendo sua demanda probabilística;
- III. Especial: material cuja formação é resultante de fatores estratégicos ou especiais, sendo sua demanda, quase sempre, de natureza incerta;
- IV. Disponível: estoque de material em perfeito estado de conservação, sem perspectiva de utilização no Órgão detentor, constituindo-se em disponibilidade sem restrições para uso em outros Órgãos da Companhia;
- V. Alienável: estoque constituído de materiais inservíveis e obsoletos para a Companhia e sucatas destinados à alienação;
- VI. **Análise:** estoque que aguarda definição sobre nova classificação, sendo enquadrado nesta classificação por motivos como:
 - i. mudanças nas políticas de estoques;
 - ii. conclusões e/ou alterações de programas e/ou cronogramas;
- iii. devoluções ao estoque;
- iv. eventuais falhas no planejamento.
- v. diferenças de inventário, quando não é possível o acerto de imediato;
- vi. a Recuperar estoque constituído de materiais sem condições imediatas de uso, mas passíveis de recuperação caso seja necessário e viável economicamente."

Desta forma, verifica-se um encadeamento lógico nas análises dos estoques da Petrobras, com todos os aspectos avaliados, seguindo uma cronologia de avaliações, da demanda, dos tipos de estoques, dos diversos tipos de custos, propiciando o planejamento de acordo com as necessidades da Cadeia Logística – *Suplly Chain*.

Destes insumos pode-se avaliar quais indicadores serão os melhores parâmetros ao longo da Gestão da Cadeia se Suprimentos *ou Supply Chain Management* (SCM), vislumbrando a otimização do tempo e dos custos na gestão dos estoques da Companhia.

Lambert, Stock e Vantine (1998) retratam algumas situações em que se podem reconhecer situações onde os estoques não estão sendo bem administrados. São eles:

- 1. Aumento do número de pedidos em atraso;
- 2. Aumento no investimento em inventário, sendo que os pedidos em atraso permanecem constantes;
 - Aumento do número de cancelamento de pedidos;
 - Falta periódica de espaço suficiente para armazenamento;
 - Grandes quantidades de itens obsoletos.

Na Petrobras, os itens 1, 2, 4 e 5 da relação acima são recorrentes evidenciando a necessidade reduzir os níveis de estoques.

Corroborando com esta análise, os indicadores de desempenho dos estoques permitem uma melhor verificação dos estoques e para isso faz-se necessário compreender como funcionam.

2.2 Indicadores de Desempenho

De acordo com a Associação Brasileira de Controle de Qualidade (c2012) indicadores representam:

[...] de forma quantitativa, dentro de uma organização, a evolução e o desempenho dos seus negócios, qualidade dos produtos e serviços, participação e motivação de seus colaboradores.

A tabela a seguir mostra como os indicadores estão relacionados com todos os processos de gestão de uma organização.

Indicadores	Balanced Score Cards	Relação com
Do negócio	Business Performance	A organização
Do sistema de gestão da	Quality Performance	Os clientes e
qualidade		fornecedores
Dos processos tecnológicos	Technical Process	Os produtos e
	Performance	processos
Das equipes de trabalho	Team Performance	Colaboradores

Tabela 3 – Associação dos indicadores aos seus processos

Fonte: Associação Brasileira de Controle da Qualidade, (c2012).

A maioria dos indicadores está associada aos objetivos da qualidade. Pode-se ter mais de um indicador para um único objetivo.

Objetivos

Os objetivos da qualidade são estratificados na Política da Qualidade da organização. Devem traduzir como deveremos acompanhar a evolução de um determinado processo, produto ou negócio. Todos os objetivos devem ser medidos e quantificados através de indicadores.

Metas

Cada indicador deve ser acompanhado de uma meta, que fornecerá informação de sucesso ou fracasso na avaliação de um determinado processo, produto ou negócio.

Representação dos indicadores

Os indicadores devem ser representados pelo seu modelo matemático, periodicidade e método de coleta, além dos objetivos e das metas.

Os indicadores podem ser apresentados graficamente, para se ter ideia de variabilidade e tendência, que ajudarão na pesquisa de soluções

para melhoria contínua, com o intuito de atingir a meta proposta ou de definir novas metas para aquele indicador.

A definição do método de coleta é bastante interessante quando se tem a composição de diferentes variáveis para se obter o indicador, de maneira que se pode ter certeza de que todas essas variáveis foram contempladas e utilizadas na obtenção do indicador.

Arozo (2002) confirma a definição da ABCQ quando diz que os indicadores de desempenho utilizados na gestão de estoque podem ser segmentados em três grupos: custo, serviço e conformidade do processo.

Os dois primeiros grupos de indicadores estão relacionados aos resultados do processo que compõem o *trade-off* básico da gestão de estoque, ou seja, o balanceamento do nível de estoque com o nível de serviço com o objetivo de obter-se o menor custo total. O terceiro grupo de indicadores, por sua vez, está associado às razões pelo qual o desempenho é alcançado.

Indicadores de desempenho são métricas que nos permitem avaliar o desempenho de uma organização. Para Martins e Alt (2003) é necessário que a organização identifique padrões de melhoria que pretende alcançar e as quantifique, pois para empresas com um longo horizonte de planejamento como a Petrobras, com movimentação de grandes quantidades e frequência, a busca pela redução dos custos deve ser permanente.

Assim, com referências das melhores práticas e apoiado na otimização dos recursos empregados, a fim de se obter o melhor custo benefício na organização, identifica-se a necessidade de parâmetros ou indicadores de planejamento ao longo de todo o processo logístico. Por isso, as organizações precisam se apoiar em ferramentas de apoio a decisão ou indicadores de .

Um dos indicadores utilizados pelas empresas é o benchmarking que para Cristopher (2002) se define como uma referência base de medição ao identificar o "melhor da classe" tanto sob o aspecto dos

produtos como a dos processos que o produzem para que seja alcançado.

Lustosa et al. (2008), diz que o objetivo da gestão dos estoques é manter o equilíbrio entre os custos do pedido, armazenagem e falta, e precisa manter-se alinhada com as táticas e estratégias da organização, por isso os indicadores de desempenho mais utilizados na gestão dos estoques estão ligados ao fluxo dos materiais que entram e saem dos estoques

Desta forma, identificar indicadores e traçar novas metas para estes passa a ser a prioridade que em conjunto com o planejamento dos estoques permitirão o melhor controle. Os indicadores mais recorrentes na literatura logística associados à gestão dos estoques são:

I. Acurácia: Acuracidade é um adjetivo, sinônimo de qualidade e confiabilidade da informação. Significa exatidão, segundo Gasnier (2002). Na contagem física de saldos de estoque significa identificar número de itens, e aqui adjetiva-se como corretos, portanto número de registros contados corretamente ou o valor, como segue a fórmula (2.2.7) e (2.2.8)

II. Nível de Serviço (NS): identifica o número de requisições atendidas e o número de requisições efetuadas, como segue a fórmula (2.2.9):

NS = Número de requisições atendidas

Número de requisições efetuadas

(2.2.9)

III. Giro de Estoques (GE): identificar o valor de itens consumidos em um período "X" e o valor do estoque médio no mesmo período destes materiais, como segue a fórmula (2.2.10):

(2.2.10)

IV. Cobertura: identificar o número de dias do período e o valor do giro dos materiais calculados na métrica III, como segue a fórmula (2.2.11)

Estes indicadores podem ser utilizados pela indústria do petróleo. Entretanto, pelas dificuldades de se obter as referências de *benchmarking* dos concorrentes, as comparações acabam por serem feitas com base nos processos internos da Companhia.

Além dos indicadores tradicionais de estoques, os controles dos valores em estoque podem dizer muito da operação, geralmente valores altos na indústria do petróleo por conta de materiais e equipamentos complexos (de alto valor agregado). A evolução dos estoques não permite

muitas inferências se não estiver associado a outras análises. Para chegar ao Índice de Evolução dos Estoques da Petrobras (IEEP) temos a seguinte fórmula:

V. Índice de Evolução dos Estoques (IEEP): identificar o valor contábil dos estoques do mês atual e o valor não contábil dos estoques do mês anterior, como segue a fórmula (2.2.12):

(2.2.12)

O IEEP é calculado utilizando-se o valor dos estoques da empresa no fechamento contábil dividindo-se pelo valor dos estoques do mês anterior e nesta soma-se a parcela dos estoques em trânsito.

De acordo com Waters (2003), outro indicador de performance muito utilizado pelas organizações é o *ROA* – *Return on assets* ou Retorno sobre os ativos, que verifica o retorno sobre os ativos. Para calcular temos que conhecer o valor total dos ativos empregados sobre o lucros recebidos.

VI. ROA: calculam-se os lucros recebidos e o valor dos ativos empregados, como segue a fórmula (2.2.13):

Para calcular este indicador, é necessário conhecer alguns custos tais como operacionais, total, de manter os estoques, valor das vendas, total do valor dos ativos a fim de se apurar o resultado do ROA, pois para chegar ao ROA outros dados têm que ser conhecidos, como o exemplo abaixo (2.2.14), (2.2.15), (2.2.16), (2.2.17) e (2.2.18):

Retorno dos Ativos = Lucros

Total dos ativos

(2.2.14)

Total de Ativos = Outros ativos + Valor dos Estoques

(2.2.15)

Lucros = Vendas - Custos Totais

(2.2.16)

Custos Totais = Custos Operacionais + Custos de Estoques

(2.2.17)

Custo dos estoques = Valor dos materiais em estoque X Custo de matnter os materiais em estoques

(2.2.18)

Portanto, para se chegar ao ROA, há que se ter acesso aos dados estratégicos de cada Unidade Operacional a fim de que se possa obter o retorno em função dos ativos aplicados, conforme o cálculo acima descrito.

Além dos indicadores tradicionais relatados por vários autores, há os parâmetros específicos para uma Corporação. Na Petrobras, duas áreas têm a cultura histórica de controle: são as áreas de Abastecimento e de Exploração & Produção. As diferenças de seus parâmetros refletem

as operações que cada uma desenvolve, refino e exploração e produção, respectivamente.

Estes parâmetros permitem o controle e o cumprimento de metas, mas não espelham necessariamente o sucesso na Gestão dos Estoques, pois além dos parâmetros existem os aspectos humanos, sistêmicos e de processo que dificultam o cumprimento destas.

Outra área de negócio que vem buscando se estruturar para melhor gerir seus estoques é o Gás e Energia – G&E, segmento da Petrobras que ao longo da última década está incorporando algumas Unidades termoelétricas, antes da iniciativa privada ou sociedades com a Petrobras, que não tinham seus estoques incluídos nas ferramentas de controle da *holding* Petrobras. Assim, os materiais não estavam inseridos na base de dados da Companhia e tinham gestão distinta das demais áreas de negócio. Com as novas aquisições e o fim das parcerias, as empresas do G&E estão na fase de inclusão de seu ativo circulante (estoques) aos estoques do Sistema Petrobras, e no corrente mês estão identificando as ferramentas de apoio, mais adequadas, à gestão dos seus Estoques e Armazéns.

Em todas áreas de negócio da Petrobras identificam-se os estoques excedentes. São materiais que alcançaram 23% do total dos estoques, no mês de julho de 2012, e ocupam áreas de armazenagem que oneram a Companhia com a manutenção dos estoques.

A Companhia tem feito um trabalho intensivo na redução deste tipo de estoque, monitorando os volumes (em valor) em estoques e indicando o compartilhamento destes materiais com as demais Unidades Operacionais. Um esforço que pouco dá resultado devido ao controle pouco eficaz dos formadores de estoques.

A parametrização dos materiais e sua correta verificação das demandas são o único caminho capaz de evidenciar os gargalos recorrentes na gestão dos estoques da Companhia.

A seguir, apresenta-se alguns parâmetros para a gestão dos estoques das áreas de Abastecimento e de Exploração & Produção – E&P - da Petrobras.

A área de abastecimento é responsável pelo refino do petróleo bruto e devido à característica da produção, contínua e regular, permite ao gestor dos estoques uma verificação baseada pelo histórico de consumo.

A exceção são as paradas programadas (planejadas) dos equipamentos que requerem dos gestores e compradores um acompanhamento contínuo a fim de evitar a falta de materiais o que poderia ocasionar prejuízos pela cessão das receitas, altos custos pela parada dos equipamentos, bem como problemas para a reativação dos equipamentos.

Com isso, os estoques são acompanhados por parâmetros que controlam estoques mínimos e máximos. A seguir, alguns desses parâmetros:

1. **Estoque de Bens (EBENS):** controle dos estoques, por relatório, da área de uma refinaria, onde o resultado apresentado traz a visão do resultado mensal da meta (acordada com antecedência) Esse relatório permite a visão detalhada para comparação com as seguintes visões: A) <u>Unidade:</u> todas as Unidades Operacionais do Refino, incluindo os estoques compartilhados; B) <u>Tipo de Estoque:</u> estoque de centro e projeto, sendo o estoque de projeto dividido entre paradas, investimento e disponível; C) <u>Especialidade:</u> área de caldeiraria, elétrica, instrumentação, mecânica, produtos químicos etc; D) <u>Tipo de MRP:</u> ressuprimento manual, sob demanda ou estratégico; E) É possível ainda a escolha do período de análise, <u>mês inicial e final</u>. Para qualquer combinação das visões escolhidas, é apresentado também o valor de estoque excedente daquela parcela de estoque;

- 2. Fator de Complexidade de Materiais: esse indicador é baseado no mesmo banco de dados do indicador anterior. Cruza os dados dos estoques de centro e compara com o Fator de Complexidade de Manutenção. É possível obter a visão histórica, por meio da seleção do período de visualização inicial e final, ou a comparação visual entre as Unidades Operacionais do Refino e suas metas;
- 3. **Utilização de Contratos:** objetiva identificar a utilização de contratos dentro do Refino, em quantidade de itens ou valor e o período de análise;

4. Indicadores de Aquisição:

- A) <u>Indice de Atendimento a Data Contratual (IADC)</u>: o cálculo do índice leva em consideração a diferença entre a data de remessa e a data do documento de entrada do material (MIGO transação do SAP). Dos valores obtidos, apresenta-se a porcentagem em que o resultado da diferença seja menor ou igual a zero sobre o total de remessas (Índice de Atendimento) e a porcentagem em que o resultado da diferença seja maior que zero sobre o total de remessas (Índice de Não Atendimento).
- B) Índice de Atendimento a Data Requerida (IADR). O cálculo do índice leva em consideração a diferença entre a data de remessa informada na requisição (denominada carrinho) e a data do lançamento (MIGO);
- C) <u>Tempo Médio de Colocação de Compras (TMCC)</u>: o indicador é calculado a partir da diferença entre a Data do Pedido de Compra (Criação ou Primeira Autorização) e a Data da Requisição (Criação, Liberação ou 1ª Autorização).

A área de Exploração e Produção é responsável pela identificação dos poços de petróleo e pela retirada do óleo neles contidos; devido a sua característica, irregular e não constante, utiliza-se de equipamentos diferenciados, dificultando o controle por parte do gestor dos estoques com uma verificação baseada pelo histórico de consumo, a exceção da extração do petróleo (produção).

Por isso, os estoques são acompanhados por indicadores de Exploração & Produção – E&P - que são divididos em subprocessos de Logística. A seguir, alguns desses indicadores:

- 1. **Logística**: acuracidade. **Objetivo**: avaliar o quanto os registros contábeis de materiais se aproximam dos estoques físicos (inventariado);
- 2. **Logística**: *backlog* de Reservas **Objetivo**: apresentar a quantidade de meses que a Unidade levaria para atender todos os itens de reservas, considerando que nenhum novo item seja gerado (uma espécie de cobertura);
- 3. **Demanda:** EOROB Valor do Estoque Operacional sobre a Receita Operacional Bruta **Objetivo:** apresentar percentual de participação do estoque operacional em relação ao valor da receita operacional bruta mensal;
- 4. **Demanda:** VEISC18m Valor de Estoques de Investimento Sem Consumo há 18 Meses **Objetivo:** apresentar o valor de estoque (R\$ MM) de investimento sem consumo há 18 meses;
- Demanda: VEOSC24m Valor de Estoques de Operação
 Sem Consumo há 24 Meses Objetivo: apresentar o valor de estoque (R\$ MM) de investimento sem consumo há 24 meses;

- 6. **Demanda:** VEC Valor de Estoque Contábil **Objetivo:** apresentar o valor do fechamento mensal do estoque contábil;
- 7. **Demanda:** MPT90d Material em Poder de Terceiros com Contrato Vencido há 90 dias **Objetivo:** apresentar o valor de estoque (R\$ MM) em poder de terceiro com contrato vencido há mais de 90 dias;

A crescente escala de crescimento dos estoques reduz a competitividade da Companhia, pois segundo Waters (2003), o custo de se manter os estoques é de cerca de 20% ao ano do valor dos estoques. Uma das formas que o autor menciona para a otimização dos estoques se dá pela terceirização, beneficiando-se de empresas especializadas em parte ou em toda a logística, fazendo com que a Companhia se concentre no seu core business. De certa forma a Petrobras já pratica este tipo de outsourcing na logística de transportes e de armazenagem e as vantagens associadas são:

- 1. Baixos custos fixos, sem imobilizar em Patrimônio, somente pagando por serviços que são descontados no Imposto de Renda;
- 2. Utilização de especialistas que se utilizam de novas práticas e tecnologias;
- 3. Otimização no ganho de escala;
- Altos níveis de serviço;
- 5. Flexibilidade na capacidade de separação em função da demanda;
- 6. Baixa exposição de riscos com a variação da demanda;
- 7. Crescimento geográfico e conhecimento local;
- 8. Possibilidade de trabalhar em novos mercados.

Dos aspectos negativos está a perda do controle da gestão dos armazéns, mas que se pode minimizar com o acompanhamento dos KPI.

Este *outsourcing* não é o que a Companhia pratica hoje, pois ainda é a detentora da gestão dos armazéns e os terceiros fazem a operação.

O saneamento dos estoques é uma premissa definida no Manual de Suprimentos de Materiais da Petrobras – MSM - e pelos padrões de gestão, denominados SINPEP – Sistema Integrado de Padronização Eletrônica da Petrobras - que orienta as Unidades Operacionais a fazer a constante desmobilização de materiais seja por alienação ou transferência das Unidades com vistas a melhorar a utilização dos recursos financeiros imobilizados em materiais.

A atividade de saneamento está associada ao planejamento das operações nas Unidades Organizacionais e com os materiais a serem consumidos de acordo com a produção.

Na medida em que a gestão dos armazéns não possui um controle adequado sobre os materiais nele contidos, uma preocupação permanente é o saneamento do mesmo, pois muitas vezes os equipamentos e investimentos utilizam-se de novas tecnologias, deixando para trás os materiais sobressalentes antigos que ficam nos depósitos aumentando o valor dos estoques, bem como onerando com os custos associados à manutenção.

A política de saneamento deve envolver os materiais de baixo giro e sobressalentes, bem como equipamentos obsoletos. Por isso os materiais devem ser acompanhados tomando por base suas demandas, com políticas de estoques coerentes.

O planejamento agregado dos estoques deve considerar o nível dos estoques no início da produção, os estoques durante a produção e os estoques no final da produção, bem como a demanda encontrada no período. Assim, o *set-up* da produção dever estar contemplado na avaliação dos estoques para que sejam repostos. Entretanto, na indústria do Petróleo estes *set-ups* são de longo prazo e estão atrelados á manutenção preditiva e preventiva dos equipamentos na área de produção, dificultando sobremaneira a organização dos estoques que possuem estes pré-requisitos. Por isso a previsão deve ser feita com base

na demanda caso não se consiga atrelar aos planos de inspeção ou a lista técnica dos equipamentos.

No estudo de caso da *Center for Strategic Supply Research* – CAPS -, descrito por Ashenbaum (2005), são tratados alguns problemas e questões para melhor gerenciar este tipo de estoques, dentre os quais destacam-se:

- 1. Falta de priorização da alta gerência;
- 2. Falta de alinhamento na área de compras para se ter um bom estoque de MRO;
- 3. A falta de práticas robustas para reagir às fases do ciclo do mercado na gestão de itens MRO;
- Atribuição da criticidade de um item MRO;
- A necessidade de itens e processos padronizados;
- 6. Recuperação de investimentos;
- 7. Fornecedor que gerencia seus estoques.

A escassez de parâmetros e a falta de um *benchmark*, na armazenagem dos concorrentes diretos da Companhia, dificultam ainda mais a indicação do volume do estoque adequado para as operações da Petrobras, seja qual for o segmento, Exploração e Produção, Refino ou Gás e Energia.

2.3

Integração da Cadeia Logistíca

Como abordamos na introdução, a integração decorrente da globalização ocorreu em razão de dois fatores: das inovações tecnológicas e do incremento no fluxo comercial mundial.

Assim, o gerenciamento da cadeia de suprimentos (*Supply Chain Management*) passou a ter um papel relevante na relação das multinacionais e transacionais, pois trata-se da administração orientada

para a integração entre os principais processos de negócios existentes entre os elementos de uma cadeia logística, desde os fornecedores iniciais até os consumidores finais, em um modelo de negócio harmônico e de alto desempenho. Seu objetivo é agregar o maior valor possível ao consumidor.

Partindo deste princípio, a busca pela integração da cadeia logística se dá pela elevação da qualidade de produtos, serviços, relacionamentos, conduta pessoal e desenvolvimento dos empregados.

Na visão do aprimoramento contínuo e gradual, temos no *Kaizen* a filosofia japonesa trazida nos anos 1980 na busca pela eliminação do desperdício (tempo, recursos financeiros, recursos materiais e esforço). A palavra *Kaizen* pode ser decomposta por *Kai* = mudança e *Zen* = bom, ou seja, boas mudanças.

Além da visão Kaizen, adere a este estudo o conceito de *Lean Production*, denominado como um processo de melhoria contínua, projetado para maximização, no longo prazo, dos recursos das empresas é uma abordagem para se conseguir a excelência, baseada na eliminação de perdas e focada na análise de valor e na redução de atividades que não agregam valor ao produto.

De acordo com Cristopher (2002) a gestão logística é um conceito voltado para o fluxo, a fim de integrar recursos ao longo da Cadeia Logística desde os fornecedores até os clientes finais, sendo o ideal avaliar os custos e o desempenho deste fluxo. Assim, um sistema de custeio logístico eficaz deve identificar o custo total do sistema para a realização dos objetivos logísticos desejados e os custos dos demais fatores associados.

Temos a oportunidade de eliminar perdas com foco na análise de valor e na redução de atividades que não agregam valor ao produto. Para tanto o *Lean Production* apoiada em *Workflows* é a forma de se fazer a gestão logística, ao se elaborar um planejamento, que visa melhorar o desempenho deste fluxo, desde os fornecedores até os clientes finais,

apoiado na verificação dos tempos do processo e da avaliação do mês subsequente na forma como este diagrama de perdas se comporta.

A integração logística, além de melhorar o fluxo da empresa, melhora a utilização dos ativos de transporte e armazenagem e elimina a duplicação de tarefas. A seguir, algumas formas de integração logística, Figuras 13, 14, 15 e 16:

Fase 1- Linha Básica

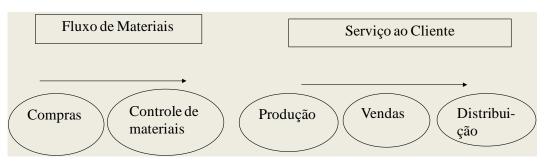


Figura 13 – Linha Básica Fonte: Cristopher, (2002).

Linha 2 – Integração Funcional:

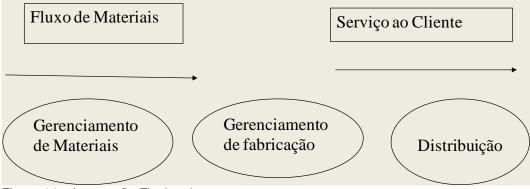


Figura 14 – Integração Fincional Fonte: Cristopher, (2002).

Linha 3 – Integração Interna:

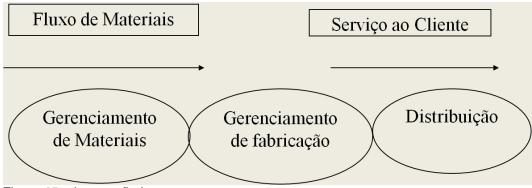


Figura 15 – Integração Interna Fonte: Cristopher, (2002).

Linha 4 – Integração Externa:

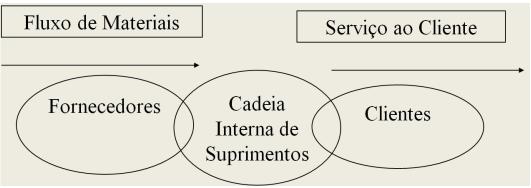


Figura 16 – Integração externa Fonte; Cristopher, (2002).

Cristopher (2002) indica que as empresas possuem essas quatro linhas de integração, e quanto mais próximo da linha 4 – externa, melhores são os resultados de integração e otimização dos custos.

Axsâter (2006) afirma que os custos com estoque têm forte impacto no resultado das empresas, impactando diretamente no retorno sobre o investimento (ROA), já que, contabilmente, são classificados como ativos.

Viagi (2011) diz que para um processo de gestão a ser implantado, com vistas à gestão da cadeia logística, é necessário vislumbrar toda a cadeia de suprimentos, em uma visão de *Lean* e apoiada em *Workflows*.

Para complementar a questão da integração tratado por Cristopher (2002), é importante citar Lambert, Stock e Vantine (1999que dizem que as empresas devem adotar uma abordagem integrada de sistemas, para

que a logística não se torne um conjunto de atividades fragmentadas e desordenadas, pulverizada dentre diversas funções organizacionais. Sem isso, o estoque tende a se acumular em interfaces criticas do negócio.

O planejamento deste processo enxuto apoia-se em indicadores de desempenho a serem tratados e estão relacionados a custo (Acurácia, ROA – Retorno sobre Ativos, IEEP), a serviços (Nível de serviço, Giro de estoques, Cobertura) e conformidade dos processos mapeados.

Os parâmetros destes indicadores serão dados pela *Center for Strategic Supply Research – CAPS -* e não havendo um valor a ser trabalho pela *CAPS* serão monitorados de acordo com a industrias que possuem estoques de insumos tipo MRO.

Proposta Metodológica

Nesta seção evidencia-se a forma da escolha dos materiais para amostra da análise e sua relevância.

Esta dissertação está baseada no que se denomina estudo de caso, uma pesquisa qualitativa que tem por norte identificar o comportamento dos dados na organização em questão.

Neste trabalho, procura-se demonstrar o contexto em que a Petrobras está inserida e a relevância do tema frente aos desafios econômicos, de custos logísticos e a frequente necessidade de investimento em áreas produtivas da Companhia.

A nomenclatura pode variar como, por exemplo, investigação de campo, pelo fato de recolherem os dados no campo e não em laboratório ou outros locais controlados pelo pesquisador; investigação naturalista, pois estuda os fenômenos em seu meio natural; interpretativa, por ter como caminho a interpretação do pesquisador e não apenas a mensuração dos fatos (BOGDAN; BIKLEN, 1994).

Diferentemente da pesquisa quantitativa – onde geralmente procura-se seguir com rigor um plano estabelecido buscando enumerar e medir eventos - na qualitativa, busca-se compreender o fenômeno em toda a sua complexidade e em contexto onde ocorre.

A escolha do Grupo de Mercadorias – GM - se deu pelo método Painel de Consenso, onde se considera suposição de especialistas, no caso da área de MATERIAIS da Petrobras, onde um grupo de pessoas chega a uma conclusão ao invés de uma só pessoa. A definição do GM inclui uma série de materiais que têm características comuns e aspectos de produção similares. A escolha do GM também se deu pela representatividade (%) do mesmo na Companhia e nas diversas Unidades Operacionais – UO - ,assim como sua importância.

A relevância frente aos desafios econômicos, de custos logísticos e a frequente necessidade de investimento em áreas produtivas nos faz analisar um Grupo de Mercadorias que está presente em toda a cadeia logística e por isso necessita de apoio para a melhor definição de quanto manter em estoque frente as demandas e quais são os Números de Materiais – NM - mais relevantes do GM ora definido.

Não há meios de desenvolver esta pesquisa se não apoiado em sistemas informatizados que tenham os dados integrados que permitam os estudos e análises; neste estudo de caso os dados são extraídos do SAP via *Business Inteligence- BI -*, uma ferramenta gerencial do SAP.

Para a escolha do GM, Tabela 3, o quadro que ilustra melhor os aspectos considerados na escolha do Grupo de Mercadoria – GM - , bem como sua representatividade na Classificação ABC. Na figura 10, a sucessão de pesquisas necessárias para identificar o material no qual os indicadores estarão baseados:

Tabela 3 – Parâmetros de escolha de um objeto de estudo

Método de Escolha =>	Definição do Material =>	Análise =>	Interpretação
Painel de Consenso. Considera a suposição de que um grupo de especialistas pode chegar a uma resposta do que uma única pessoa.	São todos utilizados na condução de fluídos não corrosivos e oxidantes diversos. Podendo ser fabricados por trefilação ou laminação, extrusão e fundição (sem costura); por solda (com costura). Estes tubos podem ser fabricados com 6 ou 12 metros de comprimento.	Trata-se de um item Classe A. É o 12º item recorrente nos estouqes da Petrobras. No Abastecimento é o 10º item mais recorrente aos estoques. Há em todas Unidades da Petrobras o que permite otimização dos estoques. Possibilidade de otimização de estoques.	eecução de óleodutos e gasodutos.

Fonte: O autor, (2012).

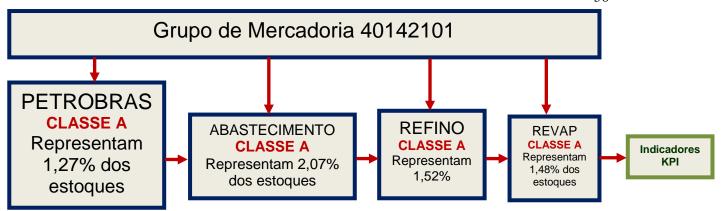


Figura 17 – Grupo de Mercadoria 40142101 Fonte: O autor, (2012).

- Estes tubos podem ser fabricados com 6 ou 12 metros de comprimento;
- Para os tubos de condução de aço carbono, é adotado o padrão construtivo ASME B36.10M;
- O padrão construtivo é um documento elaborado de forma a garantir a qualidade do item a ser fabricado. Esta qualidade intrínseca está nos quesitos de qualidade, composição química, procedimentos para confecção, armazenagem entre outros. Junto ao material acompanham certificados de garantia da qualidade.

O GM 40142101 definido pelos especialistas contém os seguintes materiais, Tabela 4:

Tabela 4 – Materiais incluídos no grupo de mercadorias 40142101

	s incluidos no grupo de		~
NM	DESCRIÇÃO DO NM	NM	DESCRIÇÃO DO NM
10.000.005	Tubo AC 5L-B PSL-1 s/c 1/2"x0.109" STD S	10.000.100	Tubo AC 5L-B PSL-1 s/c 4"x0.337" XS Sch8
10.000.006	Tubo AC 5L-B PSL-1 s/c 3/4"x0.113" STD S	10.000.101	Tubo AC 5L-B PSL-1 s/c 6"x0.432" XS Sch8
10.000.007	Tubo AC 5L-B PSL-1 s/c 1"x0.133" STD Sch	10.000.102	Tubo AC 5L-B PSL-1 s/c 8"x0.500" Sch80
10.000.008	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.145" STD	10.000.103	Tubo AC 5L-B PSL-1 s/c 10"x0.500" XS Sch
10.000.009	Tubo AC 5L-B PSL-1 s/c 2"x0.154" STD Sch	10.000.104	Tubo AC 5L-B PSL-1 s/c 1/2"x0.294" XXS
10.000.010	Tubo AC 5L-B PSL-1 s/c 2 1/2"x0.203" STD	10.000.105	Tubo AC 5L-B PSL-1 s/c 3/4"x0.308" XXS
10.000.011	Tubo AC 5L-B PSL-1 c/c 3"x0.216" STD Sch	10.000.106	Tubo AC 5L-B PSL-1 s/c 1"x0.358" XXS
10.000.012	Tubo AC 5L-B PSL-1 c/c 4"x0.237" STD Sch	10.000.107	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.400" XXS
10.000.013	Tubo AC 5L-B PSL-1 c/c 6"x0.280" STD Sch	10.000.108	Tubo AC 5L-B PSL-1 s/c 2"x0.436" XXS
10.000.014	Tubo AC 5L-B PSL-1 c/c 8"x0.322" STD Sch	10.000.110	Tubo AC 5L-B PSL-1 s/c 4"x0.674" XXS
10.000.015	Tubo AC 5L-B PSL-1 c/c 10"x0.250" Sch20	10.000.122	Tubo AC A53-B s/c 2"x0.154" STD Sch40
10.000.016	Tubo AC 5L-B PSL-1 c/c 12"x0.250" Sch20	10.000.124	Tubo AC A53-B s/c 3"x0.216" STD Sch40
10.000.017	Tubo AC 5L-B PSL-1 c/c 12"x0.375" STD	10.000.125	Tubo AC A53-B s/c 4"x0.237" STD Sch40
10.000.018	Tubo AC 5L-B PSL-1 c/c 14"x0.375" STD Sc	10.000.137	Tubo AC A106-B s/c 10"x0.250" Sch20
10.000.019	Tubo AC 5L-B PSL-2 c/c 16"x0.375" STD Sc	10.000.138	Tubo AC A106-B s/c 12"x0.406" Sch40
10.000.020	Tubo AC 5L-B PSL-1 c/c 16"x0.500" XS Sch	10.000.139	Tubo AC A106-B s/c 14"x0.375" STD Sch30
10.000.021	Tubo AC 5L-B PSL-1 c/c 18"x0.375" STD	10.000.145	Tubo AC A106-B s/c 3/4"x0.113" STD Sch40
10.000.022	Tubo AC 5L-B PSL-1 c/c 18"x0.500" XS	10.000.149	Tubo AC A106-B s/c 2"x0.154" STD Sch40
10.000.023	Tubo AC 5L-B PSL-1 c/c 20"x0.375" STD Sc	10.000.150	Tubo AC A106-B s/c 2 1/2"x0.203" STD Sch
10.000.024	Tubo AC 5L-B PSL-1 c/c 20"x0.500" XS Sch	10.000.151	Tubo AC A106-B s/c 3"x0.216" STD Sch40
10.000.025	Tubo AC 5L-B PSL-1 c/c 20"x0.750"	10.000.152	Tubo AC A106-B s/c 4"x0.237" STD Sch40
10.000.026	Tubo AC 5L-B PSL-1 c/c 24"x0.375" STD Sc	10.000.154	Tubo AC A106-B s/c 6"x0.280" STD Sch40
10.000.027	Tubo AC 5L-B PSL-1 c/c 24"x0.500" XS	10.000.155	Tubo AC A106-B s/c 8"x0.322" STD Sch40
10.000.028	Tubo AC 5L-B PSL-1 c/c 30"x0.375" STD	10.000.156	Tubo AC A106-B s/c 10"x0.365" STD Sch40
10.000.029	Tubo AC 5L-B PSL-1 c/c 34"x0.375" STD	10.000.158	Tubo AC A106-B s/c 1/4"x0.119" XS Sch80
10.000.030	Tubo AC 5L-B PSL-1 c/c 36"x0.375" STD	10.000.159	Tubo AC A106-B s/c 3/8"x0.126" XS Sch80
10.000.031	Tubo AC 5L-B PSL-1 s/c 3"x0.216" STD Sch	10.000.160	Tubo AC A106-B s/c 1/2"x0.147" XS Sch80
10.000.032	Tubo AC 5L-B PSL-1 s/c 4"x0.237" STD Sch	10.000.161	Tubo AC A106-B s/c 3/4"x0.154" XS Sch80
10.000.033	Tubo AC 5L-B PSL-1 s/c 4"x0.438" Sch120	10.000.162	Tubo AC A106-B s/c 1"x0.179" XS Sch80
10.000.034	Tubo AC 5L-B PSL-1 s/c 4"x0.531" Sch160	10.000.163	Tubo AC A106-B s/c 1 1/4"x0.191" XS Sch8
10.000.035	Tubo AC 5L-B PSL-1 s/c 6"x0.280" STD Sch	10.000.164	Tubo AC A106-B s/c 1 1/2"x0.200" XS Sch8
10.000.036	Tubo AC 5L-B PSL-1 s/c 6"x0.562" Sch120	10.000.165	Tubo AC A106-B s/c 2"x0.218" XS Sch80
10.000.037	Tubo AC 5L-B PSL-1 s/c 6"x0.719" Sch160	10.000.166	Tubo AC A106-B s/c 2 1/2"x0.276" XS Sch8
10.000.038	Tubo AC 5L-B PSL-1 s/c 8"x0.250" Sch20	10.000.167	Tubo AC A106-B s/c 3"x0.300" XS Sch80
10.000.039	Tubo AC 5L-B PSL-1 s/c 8"x0.719" Sch120	10.000.169	Tubo AC A106-B s/c 4"x0.337" XS Sch80
10.000.040	Tubo AC 5L-B PSL-1 s/c 10"x0.250" Sch20	10.000.171	Tubo AC A106-B s/c 6"x0.432" XS Sch80
10.000.041	Tubo AC 5L-B PSL-1 s/c 10"x0.307" Sch30	10.000.235	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1 1/2"x0
10.000.042	Tubo AC 5L-B PSL-1 s/c 10"x0.365" STD Sc	10.000.242	Tubo AC 5L-B PSL-1 s/c 3/4"x0.154" XS Sc
10.000.043	Tubo AC 5L-B PSL-1 s/c 12"x0.250" Sch20	10.000.247	Tubo AC 5L-B PSL-1 s/c 3"x0.216" STD Sch
10.000.044	Tubo AC 5L-B PSL-1 s/c 12"x0.375" STD	10.000.253	Tubo AC A106-B s/c 1/2"x0.294" XXS
10.000.045	Tubo AC 5L-B PSL-1 s/c 12"x0.688" Sch80	10.000.254	Tubo AC A106-B s/c 3/4"x0.308" XXS
10.000.046	Tubo AC 5L-B PSL-1 s/c 14"x0.375" STD Sc	10.000.255	Tubo AC A106-B s/c 1 1/2"x0.400" XXS
10.000.047	Tubo AC 5L-B PSL-1 s/c 16"x0.375" STD Sc	10.000.257	Tubo AC A106-B s/c 1"x0.358" XXS
10.000.048	Tubo AC 5L-B PSL-1 c/c 16"x0.250" Sch10	10.000.271	Tubo AC A333-6 s/c 1"x0.179" XS Sch80
10.000.049	Tubo AC 5L-B PSL-1 c/c 18"x0.250" Sch10	10.000.272	Tubo AC A333-6 s/c 2"x0.154" STD Sch40
10.000.050	Tubo AC 5L-B PSL-1 c/c 20"x0.250" Sch10	10.000.275	Tubo AC A333-6 s/c 6"x0.280" STD Sch40
10.000.051	Tubo AC 5L-B PSL-1 s/c 1/4"x0.119" XS Sc	10.000.284	Tubo AC A333-6 s/c 1"x0.179" XS Sch80
10.000.052	Tubo AC 5L-B PSL-1 s/c 1/2"x0.147" XS Sc	10.000.286	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.400" XXS
10.000.053	Tubo AC 5L-B PSL-1 s/c 3/4"x0.154" XS Sc	10.000.288	Tubo AC A333-6 s/c 3/4"x0.219" Sch160
10.000.054	Tubo AC 5L-B PSL-1 s/c 1"x0.179" XS Sch8	10.000.297	Tubo AC 5L-B PSL-1 s/c 1/2"x0.147" XS Sc
10.000.055	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.200" XS	10.000.298	Tubo AC 5L-B PSL-1 s/c 3/4"x0.219" Sch16
10.000.056	Tubo AC 5L-B PSL-1 s/c 2"x0.218" XS Sch8	10.000.301	Tubo AC 5L-B PSL-1 s/c 2"x0.344" Sch160
10.000.057	Tubo AC 5L-B PSL-1 s/c 2 1/2"x0.276" XS	10.000.307	Tubo AC A106-B s/c 3/4"x0.154" XS Sch80
10.000.058	Tubo AC 5L-B PSL-1 s/c 3"x0.300" XS Sch8	10.000.312	Tubo AC A106-B s/c 14"x0.750" Sch80

NM	DESCRIÇÃO DO NM	NM	DESCRIÇÃO DO NM
10.000.059	Tubo AC A106-B s/c 10"x0.594" Sch80	10.365.308	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3"x0.216
10.000.060	Tubo AC A106-B s/c 1/2"x0.188" Sch160	10.365.334	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.432
10.000.061	Tubo AC A106-B s/c 3/4"x0.219" Sch160	10.365.337	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.322
10.000.062	Tubo AC A106-B s/c 1"x0.250" Sch160	10.375.374	Tubo AC 5L-B PSL-1 s/c 14"x0.500" XS
10.000.063	Tubo AC A106-B s/c 1 1/2"x0.281" Sch160	10.378.813	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1/2"x0.1
10.000.064	Tubo AC A106-B s/c 2"x0.344" Sch160	10.378.846	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.280
10.000.065	Tubo AC A106-B s/c 3"x0.438" Sch160	10.378.854	Tubo AC ET-AB-RE/ES/TEE-200 s/c 2"x0.154
10.000.066	Tubo AC A106-B s/c 4"x0.531" Sch160	10.379.472	Tubo AC ET-AB-RE/ES/TEE-200 s/c 2"x0.218
10.000.067	Tubo AC 5L-B PSL-1 s/c 1/2"x0.188" Sch16	10.379.480	Tubo AC ET-AB-RE/ES/TEE-200 s/c 4"x0.337
10.000.068	Tubo AC 5L-B PSL-1 s/c 1"x0.250" Sch160	10.379.492	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.500
10.000.069	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.281" Sch	10.387.302	Tubo AC ET-AB-RE/ES/TEE-200 s/c 4"x0.237
10.000.070	Tubo AC 5L-B PSL-1 s/c 3"x0.438" Sch160	10.390.527	Tubo AC 5L-B PSL-1 s/c 14"x0.312" Sch20
10.000.071	Tubo AC 5L-B PSL-1 s/c 12"x0.406" Sch40	10.390.543	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1/2"x0.1
10.000.072	Tubo AC 5L-B PSL-1 s/c 1/2"x0.147" XS Sc	10.390.550	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1/2"x0.1
10.000.073	Tubo AC 5L-B PSL-1 s/c 3/4"x0.154" XS Sc	10.390.557	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1/2"x0.2
10.000.074	Tubo AC 5L-B PSL-1 s/c 1"x0.179" XS Sch8	10.390.568	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3/4"x0.2
10.000.075	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.145" STD	10.390.576	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3/4"x0.3
10.000.076	Tubo AC A53-B s/c 1/2"x0.147" XS Sch80	10.390.581	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1"x0.133
10.000.077	Tubo AC A53-B s/c 1"x0.179" XS Sch80	10.390.585	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1"x0.250
10.000.078	Tubo AC A53-B s/c 1 1/2"x0.200" XS Sch80	10.390.590	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1"x0.358
10.000.079	Tubo AC A106-B s/c 12"x0.375" STD	10.390.597	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1 1/4"x0
10.000.080	Tubo AC A53-B s/c 3/4"x0.154" XS Sch80	10.390.606	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1 1/2"x0
10.000.081	Tubo AC 5L-B PSL-1 s/c 8"x0.322" STD Sch	10.390.611	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1 1/2"x0
10.000.082	Tubo AC 5L-B PSL-1 s/c 2"x0.154" STD Sch	10.390.629	Tubo AC ET-AB-RE/ES/TEE-200 s/c 2"x0.344
10.000.083	Tubo AC 5L-B PSL-1 s/c 3/4"x0.308" XXS	10.390.640	Tubo AC ET-AB-RE/ES/TEE-200 s/c 2 1/2"x0
10.000.084	Tubo AC A106-B s/c 16"x0.500" XS Sch40	10.390.669	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3"x0.438
10.000.085	Tubo AC A333-6 s/c 1"x0.250" Sch160	10.390.773	Tubo AC ET-AB-RE/ES/TEE-200 s/c 4"x0.438
10.000.086	Tubo AC A53-B s/c 2 1/2"x0.203" STD Sch4	10.390.851	Tubo AC ET-AB-RE/ES/TEE-200 s/c 4"x0.531
10.000.087	Tubo AC A106-B s/c 8"x0.812" Sch140	10.391.179	Tubo AC ET-AB-RE/ES/TEE-200 s/c 5"x0.258
10.000.088	Tubo AC 5L-B PSL-1 s/c 8"x0.594" Sch100	10.391.634	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.562
10.000.089	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.200" XS	10.391.684	Tubo AC ET-AB-RE/ES/TEE-200 s/c 10"x0.25
10.000.090	Tubo AC 5L-B PSL-1 s/c 3/4"x0.154" XS Sc	10.391.788	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.250
10.000.091	Tubo AC 5L-B PSL-1 c/c 28"x0.375" STD	10.391.867	Tubo AC ET-AB-RE/ES/TEE-200 s/c 10"x0.36
10.000.092	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.281" Sch	10.391.888	Tubo AC ET-AB-RE/ES/TEE-200 s/c 10"x0.59
10.000.093	Tubo AC A333-6 s/c 1"x0.179" XS Sch80	10.391.890	Tubo AC ET-AB-RE/ES/TEE-200 s/c 12"x0.37
10.000.094	Tubo AC 5L-B PSL-1 s/c 1"x0.179" XS Sch8	10.407.907	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1 1/2"x0
10.000.095	Tubo AC A106-B s/c 14"x0.250" Sch10	10.519.859	Tubo AC A53-B c/c 6"x0.280" STD Sch40
10.000.096	Tubo AC 5L-B PSL-1 s/c 6"x0.280" STD Sch	10.519.873	Tubo AC 5L-B PSL-1 s/c 1 1/2"x0.200" XS
10.000.097	Tubo AC 5L-B PSL-1 s/c 3/4"x0.113" STD S	10.523.331	Tubo AC A333-6 s/c 1"x0.250" Sch160
10.000.098	Tubo AC 5L-B PSL-1 c/c 24"x0.562" Sch30	10.523.348	Tubo AC A333-6 s/c 1/2"x0.188" Sch160
10.000.099	Tubo AC 5L-B PSL-1 c/c 32"x0.250"	10.523.749	Tubo AC A333-6 s/c 1 1/2"x0.281" Sch160
10.000.100	Tubo AC 5L-B PSL-1 s/c 14"x0.250" Sch10	10.524.172	Tubo AC A671-CC60-22 c/c 20"x0.500" XS S
10.000.101	Tubo AC A106-B s/c 1 1/2"x0.200" XS Sch8	10.524.765	Tubo AC A333-3 s/c 3/4"x0.219" Sch160
10.000.102	Tubo AC A106-B s/c 12"x0.250" Sch20	10.547.306	Tubo AC 5L-B PSL-1 s/c 1/2"x0.188" Sch16
10.000.103	Tubo AC A106-B s/c 10"x0.500" XS Sch60	10.556.531	Tubo AC 5L-B PSL-1 s/c 3/4"x0.308" XXS
10.000.104	Tubo AC 5L-B PSL-1 c/c 12"x0.330" Sch30	10.584.617	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3"x0.300
10.000.105	Tubo AC 5L-B PSL-1 s/c 8"x0.406" Sch60	10.610.061	Tubo AC A106-B s/c 1 1/4"x0.250" Sch160
10.000.106	Tubo AC 5L-B PSL-1 s/c 6"x0.250"	10.680.358	Tubo AC A53-B s/c 1 1/2"x0.145" STD Sch4
10.000.107	Tubo AC 5L-B PSL-1 s/c 1"x0.133" STD Sch	10.718.172	Tubo AC A106-B s/c 20"x0.500" XS Sch30
10.000.108	Tubo AC 5L-B PSL-1 s/c 16"x0.312" Sch20	10.745.337	Tubo AC A672-A55-12 c/c 12"x0.375" STD
10.000.109	Tubo AC 5L-B PSL-1 c/c 24"x0.250" Sch10	10.779.332	Tubo AC ET-AB-RE/ES/TEE-200 s/c 12"x0.25
10.000.110	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1"x0.179	10.826.945	Tubo AC 5L-B PSL-1 c/c 36"x0.625" Sch30
10.000.111	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3/4"x0.1	10.932.572	Tubo AC 5L-B PSL-1 s/c 14"x0.594" Sch60

Fonte: O autor, (2012).

A escolha pelo Grupo de Mercadoria se deu pelo consenso de especialistas que identificaram os seguintes aspectos no Grupo de Materiais em questão:

1- Na Classificação ABC dos Grupos de Mercadorias da Petrobras, Princípio de Pareto 80/20, fica evidenciado que o GM 40142101 é de um item Classe A, anexo 4, e está situado na 12º posição da escala de valor dos estoques da Companhia, como pode-se observar na Tabela 5;

Tabela 5 – Classificação ABC dos grupos de mercadoria na Petrobras

- Class	ificaça	ao ABC dos gru			
Grupo de m	ercadorias	Período	Representação (%)		
20122701A		TUBO DE REVESTIMENTO	10,28%	10,28%	Α
40142101A		TB COND AC REVESTIDO	5,50%	15,78%	A
20142401J		PART SIST CAB POC SU	5,07%	20,84%	Α
26101506A	20422704	PARTES TURBINA A GAS	4,34%	25,18%	A
204 42 4020	20122704	TUBO DE PRODUCAO	4,08%	29,27%	A
20142402D	40151610	PARTE LINHA FLEX SUB	3,45%	32,71%	A
404547004	40151610	PARTES DE COMPRESSOR	3,03%	35,74%	A
40151700A		PT BOMBAS INDS	2,41%	38,16%	A
20142402B	40141607	TUBO FLEXIVEL PRODUC	2,16%	40,31%	A
201424050	40141607		2,05%	42,37%	A
20142405B	40143101	PARTE COMPONENT ANM	1,53%	43,89%	
201015004	40142101	PARTES MOTOR COMB IN	1,27%	45,17%	A
26101500A			1,23%	46,40%	A
20142402A		UMBILICAIS SUBMARINO PARTES DE PDG / TPT	1,17%	47,57%	A
20121900B			1,01%	48,58%	
20121304A		PARTE SIST GRAV PACK	0,97%	49,55%	A
20142403B	20121604	PARTE MANIFOLD SUBMA BROCA PERF PDC	0,89%	50,43%	A
2E111000H	20121004		0,88%	51,31%	A
25111900H	40141616	ANCORA TORPEDO PARTES DE VALVULAS	0,79% 0,73%	52,10% 52,83%	A
201215010	40141010				
20121501B		PARTES BOP SUBMARINO	0,72%	53,55%	A
20122701B		TUBO DE REVESTIMENTO	0,72%	54,26%	A
20122837A		PT UND INTERV POCO	0,69%	54,96%	A
26101505A	20121605	PARTE TURBINA VAPOR	0,69%	55,64%	A
201410074	20121605	BROCA PER INSERTADOS	0,65%	56,29%	A
20141007A		ARVORE NATAL SECA	0,64%	56,93%	
40142100A	20121420	TUBO FIBRA DE VIDRO	0,60%	57,53% 59.11%	A
		PARTES DO OBTURADOR	0,58%	58,11%	A
201212040	40101802	PERMUTADOR DE CALOR TUBO SIST GRAVE PACK	0,57%	58,68%	A
20121304B	40141600		0,57%	59,25%	
		VALVULA DE CONTROLE	0,56%	59,81%	A
401424124	20121427	VALVULA SEG SUBSUPER	0,55% 0,53%	60,36%	A
40142412A	204 42704	FLANGE PESC CURTO AC	-	60,89%	
244045004	20142701	UNIDADE BOMBEIO	0,52%	61,41%	A
24101600A	40454500	PARTES DE GUINDASTE	0,51%	61,92%	A
		BOMBA CENTRIFUGA	0,47%	62,39%	A
204 42 404 0	31181604	SELO MECANICO	0,43%	62,82%	A
20142401P		BASE GUIA PERF.MARIT	0,43%	63,25%	A
		MAT A CLAS 99996640	0,41%	63,66%	A
244546000	20121424	JUNTA SELANTE SEPARA	0,41%	64,07%	A
31151600B	20422702	AMARRA	0,40%	64,46%	A
404040000	20122/03	TUBO CURTO P/PRODUCA	0,39%	64,85%	A
40101802B		PARTES PERMUT. CALOR	0,36%	65,22%	A
40141700J		CONECTO SUBM DUT RIG	0,35%	65,57%	A
20121900A	40141613	REGISTRADOR PDG	0,35%	65,92%	A
		VALVULA GAVETA	0,34%	66,26%	A
		BROCA PERF FRESADOS	0,34%	66,60%	A
204244004	32151/03	PT CONTROL LOG PROGR	0,34%	66,94%	A
20121400A	00004430	CONJUNTO LINER	0,33%	67,27%	A
244046044	99994430	MAT A CLAS 99994430	0,31%	67,58%	A
31181604A		PARTES SELO MECANICO	0,31%	67,89%	A
40101800A		TUBO P/ TROCA TERMIC	0,30%	68,20%	A
40142309A		CURVA DE ACO P/ TUBO	0,30%	68,49%	A
		MANGOTE MARITIMO	0,30%	68,79%	A
201227021	20131010	ADENSANTE POCOS PETR	0,30%	69,09%	A
20122702H		REDUCAO T. PRODUCAO	0,29%	69,38%	A
20142401L	24454660	FERR CAB POCO SUBMAR	0,29%	69,67%	A
201422000	31151609	ACESSORIO DE AMARRA	0,26%	69,93%	A
20143000C		HASTE BOMB BOM FUNDO	0,26%	70,18%	A
20121303A	2012412	PT SIST FRAC PACK	0,25%	70,43%	A
		MANDRIL ELEVA PNEUMA	0,25%	70,68%	A
201424611	40161527	PARTE ACESS P/FILTRO	0,24%	70,92%	A
20142401M		PARTE FERR CAB. POCO	0,24%	71,17%	A
40141600D		VALVULAS ESPECIAIS	0,24%	71,41%	A
20142401N	2445:55	CONJ ALOJ EXT CONECT	0,24%	71,65%	A
2445-5	31151505	CABO DE ACO	0,24%	71,88%	A
31151500E	22444	CABOS FIBRAS SINTETI	0,24%	72,12%	A
		MODULOS UNIDADES IND	0,23%	72,35%	A
	20121508	TUBO DE PERFURAÇÃO	0,22%	72,57%	A
20121706A	2017	PARTES OVERSHOT PESC	0,22%	72,79%	A
	20121325	LINER RANHURADO	0,21%	73,00%	Α
26111500A		PT CONVERS VELOC	0,21%	73,21%	A
20142403F		PT SIST BOMB BCS PC	0,21%	73,42%	Α
	20141004	VALV.CABECA DE POCO	0,21%	73,62%	Α
26111600A		GERADOR ELETRICO	0,21%	73,83%	Α
		ELETROB CENTR PETROL	0,20%	74,03%	Α
	24102002	ACONDIC ARMAZ E PART	0,20%	74,22%	Α
20141013B		CONJ CABECA PRODUCAO	0,19%	74,41%	Α
	30102204	CHAPA GROSSA A CARB	0,19%	74,60%	Α
30222700A		CONSTRUCOES ESTRUTUR	0,19%	74,79%	Α
40142319A		TE DE ACO PARA TUBO	0,19%	74,97%	Α
20142402G		LINHAS CONTR HIDRAUL	0,18%	75,16%	В
2)		· · · · · · · · · · · · · · · · · · ·			

Fonte: O autor, (2012).

- 2- Utilizando a mesma metodológica de Classificação ABC no ABASTECIMENTO, o GM situa-se em 11º na escala de valor dos materiais desta área de negócio;
- 3- O GM é o 9º em valor no Refino, sendo classificado como item Classe A pelo método de Classificação ABC (Princípio de Pareto), Tabela 6:

Tabela 6 – Classificação ABC dos grupos de mercadoria no REFINO

Grupo de mercadorias	Período	012.2011	012.2011	Percentual (%)	Acumulado	CLASSE ABC
40151610	PARTES DE COMPRESSOR	US\$ 26.481.135,11	*	10,79%	10,79%	Α
40151700A	PT BOMBAS INDS	US\$ 22.092.783,11	*	9,00%	19,79%	A
26101505A	PARTE TURBINA VAPOR	US\$ 21.135.650,91	*	8,61%	28,40%	A
40141616	PARTES DE VALVULAS	US\$ 10.027.989,81	*	4,09%	32,49%	A
31181604	SELO MECANICO	US\$ 9.080.693,73	1.566 UN	3,70%	36,19%	A
40101800A	TUBO P/ TROCA TERMIC	US\$ 8.711.462,39	*	3,55%	39,74%	A
40141613	VALVULA GAVETA	US\$ 7.693.834,84	14.586 UN	3,13%	42,87%	A
23111500L	PT TORRE, VASOS,REAT	US\$ 5.791.298,13	*	2,36%	45,23%	A
40142101	TUBO COND.ACO CARBON	US\$ 3.735.334,15	*	1,52%	46,75%	A
40142309A	CURVA DE ACO P/ TUBO	US\$ 3.321.001,01	9.972 UN	1,35%	48,11%	A
40101802	PERMUTADOR DE CALOR	US\$ 3.186.483,67	41 UN	1,30%	49,40%	A
40142105	TUBO COND. ACO LIGA	US\$ 2.666.879,78	7.388,250 M	1,09%	50,49%	A
40101805A	PARTE D/ FORNOS PROC	US\$ 2.629.371,79	6.890 UN	1,07%	51,56%	A
26111500A	PT CONVERS VELOC	US\$ 2.585.136,84	*	1,05%	52,61%	A
40142412A	FLANGE PESC CURTO AC	US\$ 2.562.664,25	8.443 UN	1,04%	53,66%	A
31181604A	PARTES SELO MECANICO	US\$ 2.519.692,62	5.564 UN	1,03%	54,69%	A
40101601A	PARTES SOPRADORES	US\$ 2.492.873,11	4.855 UN	1,02%	55,70%	A
26121629	CABO ELETR POT TERRE	US\$ 2.349.484,59	4.855 014	0,96%		A
30102204		US\$ 2.337.001,95	*		56,66%	
	CHAPA GROSSA A CARB	US\$ 2.120.637,22	*	0,95%	57,61%	A
12161600A	CATALISADORES		FOO LIN	0,86%	58,47%	A
40141609	VALVULA DE CONTROLE	US\$ 2.067.399,93	508 UN	0,84%	59,32%	A
40141607	VALVULA ESFERA	US\$ 1.936.197,47	3.998 UN	0,79%	60,11%	Α
40101834A	PT SIST QUEIMADORES	US\$ 1.918.904,42	7.498 UN	0,78%	60,89%	A
40141600D	VALVULAS ESPECIAIS	US\$ 1.722.443,68	336 UN	0,70%	61,59%	Α
40142117	TUBO COND ACO INOX	US\$ 1.714.519,19	*	0,70%	62,29%	Α
39121100C	PARTES DE SDCD/SCMD	US\$ 1.667.558,98		0,68%	62,97%	Α
26101507A	PARTES DE TURBOEXP.	US\$ 1.586.658,13	853 UN	0,65%	63,61%	Α
22101513	PARTES ESCAV.MINERIO	US\$ 1.583.517,10	*	0,65%	64,26%	Α
31251500A	PARTES DE ATUADORES	US\$ 1.370.228,58	2.531 UN	0,56%	64,82%	Α
41116500M	PARTES ANALISADORES	US\$ 1.337.872,97	*	0,55%	65,36%	Α
40101802B	PARTES PERMUT. CALOR	US\$ 1.328.799,38	*	0,54%	65,90%	Α
40141611	VALVULA GLOBO	US\$ 1.313.829,08	1.877 UN	0,54%	66,44%	Α
40151503	BOMBA CENTRIFUGA	US\$ 1.269.145,43	61 UN	0,52%	66,96%	Α
40161527	PARTE ACESS P/FILTRO	US\$ 1.228.485,86	*	0,50%	67,46%	Α
26121642	CABO INSTRUM TERREST	US\$ 1.068.136,58	*	0,44%	67,89%	Α
39131706	ELETRODUTO RIGIDO	US\$ 1.057.095,22	*	0,43%	68,32%	Α
23111500V	PART DE FILT DESPARA	US\$ 1.002.310,13	8.722 UN	0,41%	68,73%	Α
32151703	PT CONTROL LOG PROGR	US\$ 997.333,43	*	0,41%	69,14%	Α
26101506A	PARTES TURBINA A GAS	US\$ 979.064,39	2.009 UN	0,40%	69,54%	Α
26101400A	PT MOTOR GERAD ELETR	US\$ 956.293,94	*	0,39%	69,93%	Α
40141626	VALV.MACHO NAO LUBR.	US\$ 934.589,97	202 UN	0,38%	70,31%	Α
26101500A	PARTES MOTOR COMB IN	US\$ 904.979,96	5.021 UN	0,37%	70,67%	Α
31163000B	PARTES D/ACOPLAMENTO	US\$ 902.053,66	2.202 UN	0,37%	71,04%	Α
31162300A	ELEMENTOS DE ANCORAG	US\$ 882.416,13	*	0,36%	71,40%	Α
23111500M	RECHEIO TORRES, VAZOS	US\$ 841.188,58	*	0,34%	71,74%	Α
40101604A	PARTES VENTILADORES	US\$ 831.849,94	773 UN	0,34%	72,08%	Α
31163000A	ACOPLAMENTO	US\$ 817.936,48	278 UN	0,33%	72,42%	Α
40141606	VALVULA DE ALIVIO	US\$ 816.169,22	383 UN	0,33%	72,75%	Α
40142319A	TE DE ACO PARA TUBO	US\$ 807.612,07	8.317 UN	0,33%	73,08%	Α
25101601A	PARTES CAMINH. FORA-	US\$ 800.709,32	15.485 UN	0,33%	73,40%	Α
40141634	VALVULA PORTINHOLA	US\$ 789.108,39	673 UN	0,32%	73,73%	Α
31161619	PARAFUSO ESTOJO	US\$ 780.663,56	98.579 UN	0,32%	74,04%	Α
23111503A	PT EQUIP CRAQ CATALI	US\$ 736.293,39	152 UN	0,30%	74,34%	Α
	CONEXOES P/ ELETRODU	US\$ 735.873,26	109.736 UN	0,30%	74,64%	A
39121311						
41112410	TRANSMISSOR DE PRESS	US\$ 713.238,01	1.230 UN	0,29%	74,93%	Α

Fonte: O autor, (2012).

- 4- O GM em questão é utilizado em todas Unidades Operacionais da Petrobras;
- 5- Na REVAP onde representam 1,48% estão em 13º posição do itens Classe A, Tabela 7.

Tabela 7 – Classificação ABC dos grupos de mercadoria na

CENTRO	Grupo de mercadorias	Período	012.2011	012.2011	Percentual (%)	Acumulado	CLASSE ABC
REVAP	23111500L	PT TORRE, VASOS,REAT	US\$ 2.935.834,96	*	8,62%	8,62%	Α
REVAP	26101505A	PARTE TURBINA VAPOR	US\$ 2.896.925,58	*	8,51%	17,13%	Α
REVAP	40101802	PERMUTADOR DE CALOR	US\$ 2.435.828,13	12 UN	7,15%	24,28%	Α
REVAP	40151700A	PT BOMBAS INDS	US\$ 2.423.954,98	2.181 UN	7,12%	31,40%	Α
REVAP	40101800A	TUBO P/TROCA TERMIC	US\$ 2.200.333,89	13.103 UN	6,46%	37,86%	Α
REVAP	40151610	PARTES DE COMPRESSOR	US\$ 1.854.387,74	*	5,44%	43,30%	Α
REVAP	40101601A	PARTES SOPRADORES	US\$ 1.401.301,31	1.024 UN	4,11%	47,42%	Α
REVAP	31181604	SELO MECANICO	US\$ 1.113.582,46	155 UN	3,27%	50,69%	Α
REVAP	40142309A	CURVA DE ACO P/ TUBO	US\$ 957.264,66	1.362 UN	2,81%	53,50%	Α
REVAP	40141613	VALVULA GAVETA	US\$ 845.943,58	1.652 UN	2,48%	55,98%	Α
REVAP	30102204	CHAPA GROSSA A CARB	US\$ 837.877,68	*	2,46%	58,44%	Α
REVAP	40141616	PARTES DE VALVULAS	US\$ 674.328,10	5.465 UN	1,98%	60,42%	Α
REVAP	40141600D	VALVULAS ESPECIAIS	US\$ 667.953,32	12 UN	1,96%	62,38%	Α
REVAP	40142101	TUBO COND.ACO CARBON	US\$ 503.812,63	9.856,306 M	1,48%	63,86%	Α
REVAP	12161600A	CATALISADORES	US\$ 487.123,78	*	1,43%	65,29%	Α
REVAP	26121629	CABO ELETR POT TERRE	US\$ 457.633,97	29.015,150 M	1,34%	66,64%	Α
REVAP	23111503	SUBST P/ 23111503A	US\$ 393.976,90	1 UN	1,16%	67,79%	Α
REVAP	40151503	BOMBA CENTRIFUGA	US\$ 361.267,52	12 UN	1,06%	68,85%	Α
REVAP	40142412A	FLANGE PESC CURTO AC	US\$ 295.369,14	900 UN	0,87%	69,72%	Α
REVAP	31181604A	PARTES SELO MECANICO	US\$ 246.039,88	585 UN	0,72%	70,44%	Α
REVAP	41116500M	PARTES ANALISADORES	US\$ 244.582,21	*	0,72%	71,16%	Α
REVAP	23111503A	PT EQUIP CRAQ CATALI	US\$ 238.532,21	7 UN	0,70%	71,86%	Α
REVAP	26111500A	PT CONVERS VELOC	US\$ 236.824,71	125 UN	0,70%	72,56%	Α
REVAP	40141607	VALVULA ESFERA	US\$ 230.753,94	362 UN	0,68%	73,23%	Α
REVAP	39131706	ELETRODUTO RIGIDO	US\$ 217.269,62	4.203 UN	0,64%	73,87%	Α
REVAP	31162300A	ELEMENTOS DE ANCORAG	US\$ 210.220,93	*	0,62%	74,49%	Α
REVAP	39121100C	PARTES DE SDCD/SCMD	US\$ 185.149,29	*	0,54%	75,03%	В

Fonte: O autor, (2012).

Após a definição do GM 40142101, de tubo condutor de aço carbono, foi necessário identificar uma amostra dos materiais deste GM em uma Unidade Operacional que os utilize e a partir dela identificar o comportamento dos indicadores destes materiais a fim chegar a algumas conclusões.

Definido os materiais (NM) parte-se para a análise dos indicadores destes materiais.

Como mencionou-se anteriormente, não há meios de desenvolver esta pesquisa se não apoiado em sistemas informatizados, no caso da Petrobras não há como chegar aos dados supramencionados sem o SAP, com apoio do *Business Inteligence* - BI. Os dados para a análise foram extraídos deste ERP.

Este estudo utilizou as *queries* de consumos, de estoques (que consideram materiais em trânsito), de estoques contábeis (não considera estoques em trânsito) para aferir os resultados citados. As extrações consideraram o período de janeiro de 2009 a dezembro de 2011, e foram coletadas de janeiro de 2012 a outubro de 2012.

A interpretação dos resultados advindos da manipulação das informações coletadas no banco de dados da Petrobras (SAP) estão apoiados nos conceitos e análises descritas ao longo deste trabalho.

Foram utilizados banco de dados em excel, access, literatura especializada e documentos internos Petrobras de orientação para que se possa trazer um resultado mais próximo da realidade frente aos problemas diários na Companhia.

Como contribuição este trabalho identificou os indicadores mais relevantes para avaliar o estoque de uma Unidade Operacional, Tabela 8, bem como suas respectivas fórmulas de cálculo e objetivos de cada um a fim de assistir os Gestores de Estoques a elaborar e controlar de forma eficaz os estoques de sua Unidade na Petrobras. Ao acompanhar estes indicadores o Gestor de Estoques terá condições de monitorar a evolução dos estoques e propor ações que possam aprimorar a performance ao se otimizar o *trade-off* : nível de serviço *versus* capital imobilizado em estoques (ativos).

Tabela 8 – Grupo de indicadores para uso na Petrobras

Indicador	Cálculo	Objetivos
Acurácia	Nº de itens corretos / Nº total de itens	Na contagem física de itens dos estoques indentificar o número de itens corretos e do total de itens ou ainda o valor
	Valor de itens corretos / Valor Total de itens	
Nível de Serviço	Nº de requisições atendidas / Nº de requisições efetuadas	Identificar o número de requisições atendidas e o número de requisiçoes efetuadas
Giro de Estoques	Valor consumido no período / Valor do estoque médio no período	Identificar o valor de itens consumidos no período "X" e o valor do estoque médio, no mesmo período, destes materiais.
Cobertura e Backlog de reservas	Nº de dias do período em estudo / Giro	Identificar o número de dias do período e o valor do giro dos materiais calculados na métrica do giro.
Valor do Índice de Evolução dos Estoques	Valor contábil dos estoques no mês atual / Valor dos estoques no mês anterior	Identificar o valor contábil dos estoques do mês atual e o valor não contábil dos estoques no mês anterior
ROA	Lucros recebidos / ativos empregados	Verifica o retorno sobre os ati∨os
EBENS	É a evolução dos estoques	É o controle dos estoques de uma refinaria, onde o resultado apresentado traz a visão do resultado mensal de meta (acordada com antecedência)
Fator de Complexidade de Materiais	É o cruzamento de dados de estoque de centro comparado com o Fator de Complexidade de Manutenção	Ele cruza os dados dos estoques de centro e compara com o Fator de Complexidade de Manutenção
Utilização de Contratos	É elaborado com base na utilização dos contratos registrados	Tem como objetivo a utilização dos contratos dentro do REFINO
IADC	O cálculo do índice leva em consideração a diferença entre a data da remessa e a data do documento de entrada do material	Índice de atendimento a data contratual
IADR	Apresenta a diferença entre a data de remessa informada na requisição (denominada carrinho) e a data de lançamento no SAP	Índice de atendimento a data requerida
TMCC	Calculado a partir da diferença entre a data do pedido de compra (criação ou primeira autorização) e a data de requisição (criação, liberação ou priemira autorização)	Tempo médio de colocação de compras
EOROB	Valor do estoque operacional / Receita operacional bruta	Apresenta o percentual de participação do estoque operacional em relação ao valor da receita operacional bruta mensal
VEISC18m	Valor de estoques de investimento sem consumo há 18 meses	Apresenta o valor de estoque (R\$, MM) de investimento sem consumo há 18 meses
VEOSC24m	Valor de estoques de operação sem consumo há 24 meses	Apresenta o valor de estoque (R\$, MM) de operação sem consumo há 18 meses
VEC	Valor de estoque contábil	Apresentar o valor do fechamneto mensal do estoque contábil
MPT90d	Material em poder de terceiro com contrato ∨encido há 90 dias	Apresenta o valor de estoque (R\$, MM) em poder de terceiros com contrato vencido há mais de 90 dias

Fonte: O autor, (2012).

4

Estudo de Caso

Nesta seção apura-se a participação dos materiais identificados no capítulo anterior, nos estoques da Unidade identificada para o estudo de caso e farei a análise dos indicadores apontados tomando por base os materiais definidos.

Dada a pulverização do Grupo de Material escolhido nas diversas Unidades Operacionais – UO -, havia a necessidade de escolher uma UO no qual seus materiais pudessem ser analisados com as métricas identificadas neste estudo, mas onde buscar o GM diante de tantas UO em funcionamento? Quais seriam os critérios para escolha desta Unidade?

Assim definiu-se a escolha por uma Unidade com maturidade operacional, de mais de dez anos, e de vendas de produtos acabados, que tenha uma gestão eficaz no que concerne à otimização de custos e de estoques, com logística de transporte favorável, mas que não seja um benchmark em sua área de negócio. Uma Unidade com acesso a rodovias, oleodutos, portos, fornecedores e com capacidade instalada complexa para tornar o estudo mais eficiente.

4.1 Unidade Fabril do Estudo de Caso – Refinaria Henrique Lage - REVAP

Viu-se na Refinaria do Vale do Paraíba ou ainda Refinaria Henrique Lage – REVAP - a Unidade requerida. Esta começou a ser construída em fevereiro de 1974, figura 18, e conta com uma localização privilegiada, uma vez que São José dos Campos está próxima dos principais centros consumidores, e detém a facilidade para o recebimento de petróleo cru, em função da proximidade com o Porto de São Sebastião e a

possibilidade de escoamento de resíduos industriais sem comprometer a evolução do mercado consumidor.

Figura 18 – Inicio da obras da REVAP Fonte: Petrobras, (2012c).

Crescimento

A REVAP, figura 19, contribuiu para o desenvolvimento local e impulsionou ganhos econômicos e tecnológicos na região de São José dos Campos. Desde o início de suas operações, passou a ser a maior contribuinte do município em IPTU e ICMS, além de gerar novos empregos e colaborar para elevar a qualificação profissional da força de trabalho.

Figura 19 – Refinaria do Vale do Paraíba, REVAP Fonte: Petrobras, (2012c).

Cenário Atual

Atualmente, a REVAP responde por 15% do processamento de derivados de petróleo no País. Seus produtos abastecem o Vale do Paraíba, Sul de Minas Gerais, Litoral Norte e parte da Grande São Paulo.

A refinaria processa 40 milhões de litros de petróleo por dia e seus principais derivados são nafta petroquímica, óleo diesel, gasolina, gás de cozinha, óleo combustível, asfalto e querosene de aviação. Este produto atende integralmente à demanda do Aeroporto Internacional de Guarulhos, além de outros aeroportos no Estado.

<u>Modernização</u>

A celebração, dos 30 anos da REVAP, foi marcada pela nova fase da refinaria. As obras de modernização, de sua planta industrial com um investimento da ordem de US\$ 3 bilhões, conclui a ampliação de sua capacidade de processamento em 2011.

O objetivo desta ampliação é o de oferecer ao Brasil energia de qualidade, ambientalmente limpa, com segurança e sem dependência externa. Com a modernização, o faturamento da refinaria deverá aumentar em 6,5% e a arrecadação do ICMS em 15%, já que a unidade estará adaptada para processar, percentualmente, maior volume de petróleo nacional e produzir derivados ambientalmente mais adequados, de alta qualidade e maior valor agregado.

As Unidades da área de negócio do ABASTECIMENTO, Unidades de Refino, estão trabalhando, há cinco anos, com metas claras de redução dos estoques frente às demandas e o fator de complexidade de suas Unidades de Refino. Assim, seus parâmetros estão melhor controlados e identificados. A seguir os gráficos que representam esta otimização.

Na figura 20, verifica-se que os estoques da Petrobras obtiveram um crescimento de 30,47%, em reais, já os estoques da área de

Abastecimento reduziram em 30,17%, isso porque a área vem fazendo um controle dos materiais em estoque estipulando metas para a redução. A alienação, a disponibilização e a recuperação destes materiais permitem que o capital investido em estoques seja menor, reduzindo os custos de armazenagem, de manutenção dos estoques e o custo de oportunidade.

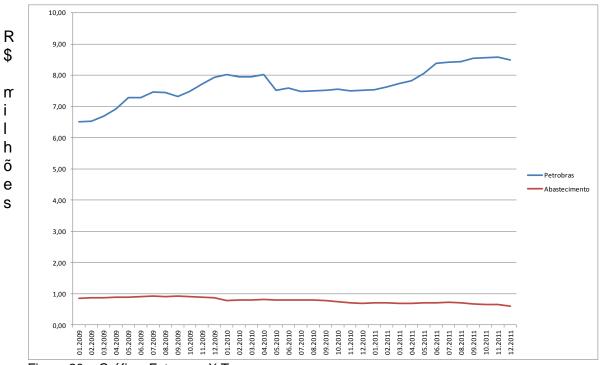


Figura 20 – Gráfico, Estoques X Tempo

Fonte: O autor, (2012).

No Figura 21, no período em análise, o valor em estoque da REVAP incluso na linha do Abastecimento e na de REFINO, permite verificar que a contribuição na redução dos estoques de materiais é da orem de 14,42%.

\$

m

Ĺ

h õ е S

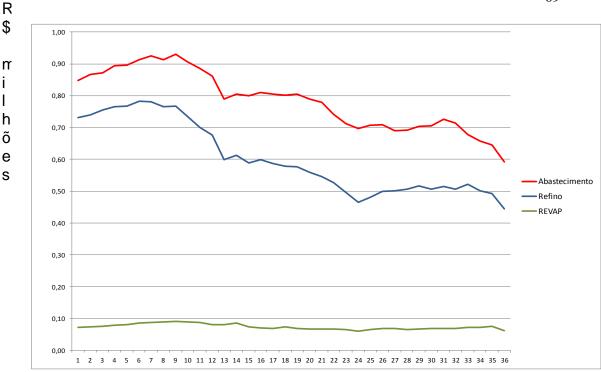


Figura 21 – Gráfico, Estoques X Tempo

Fonte: O autor, (2012).

Na Figura 21, observa-se o Grupo de Mercadorias – GM - , número 40142101, onde estão inseridos os materiais, tubo condutor de aço carbono, que são base para este estudo. Verifica-se uma queda acentuada neste Grupo de Mercadoria na área de Abastecimento e na REVAP, em 63,21% e 75,49% respectivamente. Nota-se que muitos materiais não existem mais nos estoques há mais de 12 meses, evidenciando que os materiais podem ser padronizados ou simplesmente alienados por não mais serem necessários nas operações.

No GM em questão, de 206 Número de Materiais (NM) restam cerca de 129 NM, uma redução de 37,38%, após o saneamento determinado pela área corporativa de Refino da Companhia, no período, e uma redução em metros ainda maior, 63,74% de metros de tubos.

Com esta redução houve uma economia, somente neste GM, da ordem de R\$ 3.271.804,20 (três milhões duzentos e setenta e um mil e vinte centavos) com os materiais, ou seja, mais de 75% do valor dos estoques destes materiais, a uma taxa de oportunidade de 9% ao mês.

R \$

m

h õ

e s

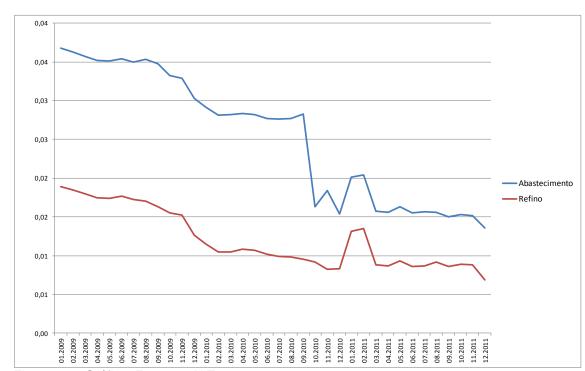


Figura 22 – Gráfico, Estoques X Tempo

Fonte: O autor, (2012).

Nos últimos seis meses evitou-se o desperdício de mais de R\$ 548 mil (quinhentos e quarenta e oito mil reais), sem considerar a economia com os custos de manutenção e operação.

Para analisar o consumo das Unidades Operacionais e dos ativos a elas associados, é necessário verificar os movimentos, Tabela 9, gerados pelo SAP Petrobras, pois para cada movimentação de material dos estoques há um movimento associado.

Os movimentos estão associados às contas da contabilidade, de tal forma que possam evidenciar as ocorrências diárias e permitir o registro exigido pela Lei das S.A. e também pela regras para empresas que possuem ações na bolsa de Nova Iorque – EUA, *Lei Sarbanes Oxley*.

	ı 9 – Código:	s dos movin			3 que pode			n estoques
Código do Movimento	Descrição do Código de Movimento	AÇÃO	Código do Movimento	Descrição do Código de Movimento	AÇÃO	Código do Movimento	Descrição do Código de Movimento	AÇÃO
101	EM Entrada mercador.	ENTRADA	350	TD bloqueado -> qld.	TRANSFERÊNCIA	872	EM Entr.Futura- estor	ESTORNO
102	EM para ped.estorno	ESTORNO	411	TR depósito- >depós.	TRANSFERÊNCIA	873	EM NF Rem Fat.Futur	ENTRADA
105	EM de estoque bloq.	ENTRADA	412	TD dep>dep.	TRANSFERÊNCIA	874	EM Fat.Futur.estorno	ESTORNO
106	Estorno EM d/est.blq	DEVOLUÇÃO	415	TR depósito ->proj.	TRANSFERÊNCIA	961	Mov 961 Entrada Oil	ENTRADA
122	DM devolução fornec.	DEVOLUÇÃO	416	TD dep>proj.	TRANSFERÊNCIA	963	Mov 963 Estorno Entr	ESTORNO
123	DM estorno dev.forn.	ENTRADA	451	SM devoluções	ENTRADA	115	FLA-Queima no flare	SAÍDA
201	SM para centro custo	SAÍDA	452	Estorno SM devoluç.	SAÍDA	Y21	TR Dep.com NF	TRANSFERÊNCIA
202	DM para centro custo	DEVOLUÇÃO	502	DM entrada s/pedido	SAÍDA	Y22	TR Dep.com NF- Estorn	ESTORNO
221	SM para projeto	SAÍDA	511	Remessa gratuita	DEVOLUÇÃO	Y23	TR Dep.com NF- Retorn	TRANSFERÊNCIA
222	DM para projeto	DEVOLUÇÃO	512	DM remessa gratuita	SAÍDA	Y24	TR Dep.NF Ret- Estorn	ESTORNO
241	SM para imobilizado	SAÍDA	541	SM dpst>remessa SC	TRANSFERÊNCIA	Y25	TR Dep.Parceria	TRANSFERÊNCIA
242	DM para imobilizado	DEVOLUÇÃO	542	DM estq.SC- >depósito	TRANSFERÊNCIA	Y26	TR Dep.Parceria- Esto	ESTORNO
251	SM para vendas	SAÍDA	543	SM saída estq.ord.cl	DEVOLUÇÃO	Y29	TR Dep.c/ NF (p/ BA)	TRANSFERÊNCIA
252	DM para vendas	DEVOLUÇÃO	544	SM entr.estoq.ord.cl	DEVOLUÇÃO	Y30	SM dpt>rem (só BA)	ESTORNO
261	SM para ordem	SAÍDA	551	SM sucata	SAÍDA	Y33	TD CONTIG.com NF	TRANSFERÊNCIA
262	DM para ordem	DEVOLUÇÃO	552	DM sucata	DEVOLUÇÃO	Y34	TR Dep.com NF - ES	ESTORNO
281	SM para diagr.rede	SAÍDA	56R	Reg.inic.est.rast	ENTRADA	Y54	DM estq.SC- >depósito	TRANSFERÊNCIA
282	DM para diagr.rede	DEVOLUÇÃO	56S	DM reg.inic.est.rast	SAÍDA	Y55	SM Perdas Recb Mater	SAÍDA
301	TR transf.cent->cent	TRANSFERÊNCIA	581	Entr.co- pr.diag.rede	DEVOLUÇÃO	Y56	EM Sobras Recb Mater	ENTRADA
302	TD transf.cent- >cent	TRANSFERÊNCIA	582	DM co- prod.diag.rede	SAÍDA	Y90	TR Dep.com NFE- Retor	TRANSFERÊNCIA
309	TR Retif.mat.p/mat.	TRANSFERÊNCIA	601	Mv.601 Baixa Est.Vda	SAÍDA	Y97	EM TF SD/MM NFE	ENTRADA
310	TD Retif.mat.p/mat.	TRANSFERÊNCIA	602	Mv.602 Estorno Saída	ESTORNO	Y98	EM Entr. Futura NFE	ENTRADA
311	Transf entre Depósit	TRANSFERÊNCIA	701	EM inventário depós.	ENTRADA	Y99	EM NFE Rem Fat.Fut	ENTRADA
312	TD transf.no centro	TRANSFERÊNCIA	702	SM inventário dpst. EM inventário	SAÍDA	YJ1	PB/YJ1 TRF Duto cent-	TRANSFERÊNCIA
313	TR retir.dpst>dpst	TRANSFERÊNCIA	703	CtrQld	ENTRADA	Z01	>cent	TRANSFERÊNCIA
314	TD retir.dpst>dpst	TRANSFERÊNCIA	704	SM inventário CtrQld	SAÍDA	Z02	TRF cent->cent- Estor	ESTORNO
315	TR armazenar no dpst	TRANSFERÊNCIA	707	EM inventário bloq.	ENTRADA	Z27	SM para ordem	SAÍDA
316	TD armazenar no dpst	TRANSFERÊNCIA	708	SM inventário bloq.	SAÍDA	Z28	DM para ordem	DEVOLUÇÃO
321	TR qualidade->livre	TRANSFERÊNCIA	711	SM Diflnv depósito	SAÍDA	Z41	Rem.MM Mat.sem NF	TRANSFERÊNCIA
322		TRANSFERÊNCIA	712	EM Diflnv depósito	ENTRADA	Z42	DEV Rem.MM.sem NF	TRANSFERÊNCIA
323	TR qualidade no cent	TRANSFERÊNCIA	713	SM Diflnv CntrQld	SAÍDA	Z55	SM sucata MES	SAÍDA
324	TD qualidade no cent	TRANSFERÊNCIA	717	SM Diflnv bloq.	SAÍDA	Z89	TR Degradação	TRANSFERÊNCIA
325	TR bloqueado no cent	TRANSFERÊNCIA	718	EM Diflnv bloq.	ENTRADA	ZI5	Sobra inv abaixo	ENTRADA
326	TD bloqueado no cent	TRANSFERÊNCIA	841	EMEqRT	ENTRADA	ZI6	Perda inv abaixo lim	SAÍDA
340	Reavaliação Lotes	TRANSFERÊNCIA	842	EEMEqRT	SAÍDA	ZI7	Sobra inv acima	ENTRADA
341	TR livre -> não livr	TRANSFERÊNCIA	861	EM TF SD/MM	ENTRADA	ZI8	Perda inv acima	SAÍDA
342	TR não livre-> livre	TRANSFERÊNCIA	862	SM TF SD/MM	SAÍDA	ZMP	TR perdas inv provis	TRANSFERÊNCIA
343	TR bloqueado- >livre	TRANSFERÊNCIA	863	DM TF SD/MM devoluçã	ESTORNO	ZMS	TR perdas inv provis	TRANSFERÊNCIA
344	TD bloqueado- >livre	TRANSFERÊNCIA	864	EM TF SD/MM devoluçã	ESTORNO	ZT1	SM para centro custo	SAÍDA
349	TR bloqueado -> qld.	TRANSFERÊNCIA	871	EM Entrega Futura	ENTRADA			

Fonte: O autor, (2012).

Para extrair do SAP Petrobras os materiais consumidos, solicitouse identificar os movimentos, Tabela 10, que tiveram movimento no período determinado.

Tabela 10 - Códigos dos movimentos do SAP R / 3 que evideciam o consumo de

materiais dos estoques

Código do Movimento	Descrição do Código	AÇÃO
	de Movimento	,
201	SM para centro custo	SAÍDA
202	DM para centro custo	DEVOLUÇÃO
221	SM para projeto	SAÍDA
222	DM para projeto	DEVOLUÇÃO
241	SM para imobilizado	SAÍDA
242	DM para imobilizado	DEVOLUÇÃO
251	SM para vendas	SAÍDA
252	DM para vendas	DEVOLUÇÃO
261	SM para ordem	SAÍDA
262	DM para ordem	DEVOLUÇÃO
281	SM para diagr.rede	SAÍDA
282	DM para diagr.rede	DEVOLUÇÃO
301	TR transf.cent->cent	TRANSFERÊNCIA
302	TD transf.cent->cent	TRANSFERÊNCIA
309	TR Retif.mat.p/mat.	TRANSFERÊNCIA
310	TD Retif.mat.p/mat.	TRANSFERÊNCIA
311	Transf entre Depósit	TRANSFERÊNCIA
312	TD transf.no centro	TRANSFERÊNCIA
708	SM inventário bloq.	SAÍDA
711	SM Dif Inv depósito	SAÍDA

Código do Movimento	Descrição do Código	AÇÃO
	de Movimento	AÇAO
713	SM Dif Inv CntrQld	SAÍDA
717	SM Dif Inv bloq.	SAÍDA
842	EEMEqRT	SAÍDA
861	EM TF SD/MM	ENTRA DA
862	SM TF SD/MM	SAÍDA
863	DM TF SD/MM devoluçã	ESTORNO
864	EM TF SD/MM devoluçã	ESTORNO
l15	FLA-Queima no flare	SAÍDA
Y21	TR Dep.com NF	TRANSFERÊNCIA
Y25	TR Dep.Parceria	TRANSFERÊNCIA
Y29	TR Dep.c/ NF (p/ BA)	TRANSFERÊNCIA
Y30	SM dpt>rem (só BA)	ESTORNO
Y33	TD CONTIG.com NF	TRANSFERÊNCIA
Y55	SM Perdas Recb Mater	SAÍDA
Z27	SM para ordem	SAÍDA
Z28	DM para ordem	DEVOLUÇÃO
ZI6	Perda inv abaixo lim	SAÍDA
ZI8	Perda inv acima lim	SAÍDA
ZT1	SM para centro custo	SAÍDA

Fonte: O autor, (2012).

Os movimentos que evidenciam o consumo e a devolução de materiais aos estoques estão identificados, Tabela 11, para que se possa mensurar quanto é consumido de cada material – NM.

Tabela 11 - Códigos dos movimentos do SAP R / 3 que evideciam o consumo e a

devolução de materiais aos estoques

Movimentos de			
Cons	sumo		
Y21	312		
864	311		
863	310		
862	309		
861	301		
708	282		
702	281		
601	262		
582	261		
542	202		
541	201		
-			

Fonte: O autor, (2012).

O Consumo da área de Abastecimento corresponde a 3,23% do total de materiais consumidos na Petrobras. E os da REVAP perante a

área de Abastecimento e de REFINO são 6,63% e 7,63% respectivamente. Este é o consumo da REVAP frente a um total de 13 refinarias em operação da Petrobras no Brasil.

Verifica-se que o GM ora analisado possui 206 itens que foram consumidos, sendo que foram consumidos 304.162,04 metros de tubo, em um total de R\$ 22,8.milhões na REVAP. Portanto, uma média de 101 mil metros de tubo ao ano e de R\$ 7,6 milhões. Devido ao saneamento promovido pela área de Abastecimento, os materiais podem ter sido vendidos (alienados) ou transferidos para outras Unidades.

Os materiais em análise, Tabela 12, são itens Classe A, de acordo com a Classificação ABC, do GM na Unidade escolhida, REVAP, com este pode-se analisar e calcular os indicadores identificados na seção 3.

Tabela 12 – Itens classe A – classificação ABC do grupo de mercadoria 40142101

CENTRO	Material	Período	012.2011	012.2011	Percentual (%)	Acumulado	CLASSE ABC
REVAP	10.779.332	Tubo AC ET-AB-RE/ES/TEE-200 s/c 12"x0.25	US\$ 160.645,17	878,300 M	31,89%	31,89%	Α
REVAP	10.826.945	Tubo AC 5L-B PSL-1 c/c 36"x0.625" Sch30	US\$ 56.139,21	41,719 M	11,14%	43,03%	Α
REVAP	10.365.337	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.322	US\$ 53.487,95	639,930 M	10,62%	53,65%	Α
REVAP	10.227.128	Tubo AC 5L-B PSL-1 c/c 32"x0.250"	US\$ 30.363,71	59,600 M	6,03%	59,67%	Α
REVAP	10.378.846	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.280	US\$ 28.381,57	426,000 M	5,63%	65,31%	Α
REVAP	10.000.399	Tubo AC 5L-B PSL-1 s/c 1/2"x0.188" Sch16	US\$ 20.821,22	1.590,830 M	4,13%	69,44%	Α
REVAP	10.000.048	Tubo AC 5L-B PSL-1 s/c 3"x0.216" STD Sch	US\$ 14.334,32	322,870 M	2,85%	72,28%	Α
REVAP	10.390.550	Tubo AC ET-AB-RE/ES/TEE-200 s/c 1/2"x0.1	US\$ 11.544,12	892,160 M	2,29%	74,57%	А

Fonte: O autor, (2012).

4.2 Indicadores na Revap do Grupo de Mercadorias - 40142101

4.2.1 Acurácia

Cobertura (em dias) = Número de dias do período em estudo / Giro

(2.2.7) e (2.2.8)

Ao verificar na ferramenta de apoio para a execução do inventário da Petrobras Transação **YSINVENTÁRIO**, os especialistas identificam

que a primeira contagem de materiais, após sua conferência, apresenta um registro diferente de quando for efetuada pela segunda vez, ou seja, a informação não está acessível para consulta apesar de estar registrada. Somente a última contagem está acessível. Portanto, após a segunda contagem, os dados da primeira não são mantidos para que os inventariantes e gestores possam depurar seus erros.

Com isso, o resultado do indicador de acurácia fica prejudicado pela ausência do registro acessível. Distancia-se o gestor do problema efetivo de inventários, necessitando de um desenvolvimento da transação SAP, de uma solução que o deixe de forma acessível para que se possa identificar os principais erros e para que se possa tomar medidas preventivas e corretivas.

Na Unidade Térmica Mario Lago, onde o inventário é uma preocupação diária, pois à medida que movimentam um item, fazem sua contagem e confrontam com as informações do sistema (SAP), os gestores dos estoques relatam que na primeira contagem, os erros são na ordem de 16% e já na segunda contagem após os ajustes os erros ficam em torno de 4%. Isso evidencia que este indicador requer a manutenção dos registros da primeira contagem e fiquem em evidência para não macular as informações que poderiam melhorar a qualidade dos controles e por conseguinte da operação.

A extração desta informação na Petrobras deve ser customizada, pois o SAP Petrobras, apesar de manter gravado a primeira contagem do inventário, não tem customizado a emissão de relatório da primeira contagem, o que seria fundamental para evidenciar as falhas e a verdadeira acurácia dos armazéns.

As Comissões de Inventários não estão atentas às primeiras contagens, pois para estes as diferenças em valor dos materiais em estoques, positivas e negativas, são o maior problema para que a soma de ambos (em módulo) não ultrapasse o limite de competência do Gestor Local. Passando este limiar, o chefe imediato teria de assinar e seria um atestado de que há problemas na Unidade gerenciada pelo mesmo.

Portanto, o foco das equipes de armazém não é a qualidade do serviço realizado, mas sim o atendimento das áreas de produção e a ocultação dos erros que deveriam ser as oportunidades de melhoria do processo de armazenagem.

Tomar este parâmetro como um indicador de apoio à gestão, se não alterado o foco do gestor local, não trará o resultado benéfico para o controle dos estoques.

Isso posto não serão coletados os referidos dados pela dificuldade de extração e também pelo fato de que a segunda ou última contagem não condiz com os problemas reais das Unidades, tornando a informação desnecessária para este estudo.

4.2.2 Nível de Serviço (Fill Rate)

Nível de Serviço = Número de requisições atendidas / Número de requisições efetuadas

(2.2.9)

Segundo Medeiros (2004), na indústria do petróleo a gestão dos custos logísticos está associado à utilização eficiente e eficaz dos recursos financeiros, dispondo-se de insumos – materiais, matérias primas e equipamentos – para garantir uma boa gestão e a alta rentabilidade.

O nível de serviço que segundo Lambert, Stock e Vantine (1998) é definido como percentual de atendimento integral aos pedidos de clientes internos e externos sobre o total de pedidos em um período de tempo especifico, não tem uma forma de controle sistêmico no SAP Petrobras. O tempo de atendimento considerado pelo SAP Petrobras considera o tempo do pedido efetuado pelo comprador e não pelo cliente interno

(usuário) e este controle é inserido no sistema manualmente. Ou seja, o SAP Petrobras não captura a informação automaticamente ao longo do ciclo do pedido pelo cliente interno, mas somente quando feito pelo comprador e de forma manual, permitindo-se erros nos dados para a compra de um mesmo item por diferentes compradores.

Este descompasso do nível de serviço afeta a incerteza e o risco fazendo com que os clientes internos, usuários de materiais, demandem elevados investimentos em materiais e equipamentos do tipo MRO para assegurar o nível de serviço, trazendo o desequilíbrio entre níveis de estoques e nível de serviço.

Este desequilíbrio pode ser evidenciado pelo Figura 23, pois a medida em que o nível de serviço aumenta maior é o capital imobilizado, mas o mais critico é que o aumento não é diretamente proporcional. notase que a partir de 93% de nível de serviço a curva deste entra na <u>Área critica – em azul</u>. Verifica-se ainda que partindo de 97% para 100% de nível de serviço o valor dos estoques aumentam 73%, comprometendo recursos que poderiam ser utilizados em outros projetos e investimentos.

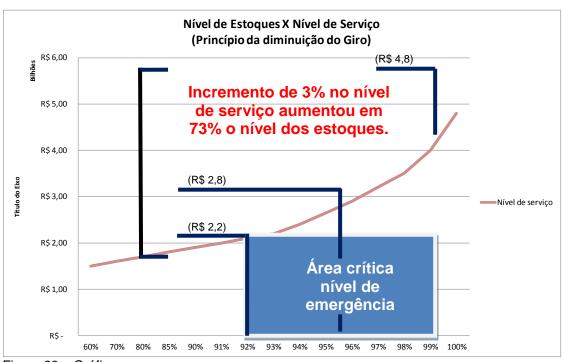


Figura 23 – Gráfico Fonte: Medeiros, (2004).

Em referência a tabela 7, Medeiros (2004, p. 23) diz:

Elevar o nível de serviço por meio de investimentos em estoques não é uma boa estratégia, conforme demonstrado na figura. A elevação no nível de serviços em pesados investimentos em estoques requer um Modelo de Gestão de Estoques integrado que trate desde a previsão da demanda, do planejamento e forma de aquisição, armazenagem, distribuição e até o descarte. Os custos dessa cadeia de suprimentos devem ser avaliados dentro do processo logístico contínuo e não apenas por meio da otimização de seus subsistemas. Outro ponto de atenção é do Princípio da diminuição do Giro pois elevados níveis de serviço – dentro da área crítica do gráfico 2 – geralmente acarretam na redução do giro de estoques, uma importante medida de eficácia da gestão de materiais (MEDEIROS, 2004, p. 23).

Portanto, temos no nível de serviço uma importante ferramenta de gestão de estoques, mas que ainda não tem, na Petrobras, métodos de controles eficientes. Precisa ser estudado frente aos ganhos dos níveis de estoques em acordo com o Giro dos estoques, permitindo assim melhor utilização dos recursos financeiros de operação para os desafios estratégicos dos investimentos da Petrobras. Assim, o indicador em questão não tem como contribuir para a gestão dos estoques até que se tenha este nível definido para cada material a começar com os de maior valor, itens CLASSE A.

4.2.3 Giro dos Estoques

Giro de estoques =
Valor consumido no período / Valor do
estoque médio no período

(2.2.10)

Medeiros (2004) diz que o Princípio da diminuição do giro é uma medida importante de eficácia na gestão de materiais ao se reduzir o giro elevam-se os níveis de estoques. O contrário também é verdadeiro, pois

ao se aumentar o giro, reduz-se o nível dos estoques. Consequentemente aumenta-se a necessidade de compras no mesmo espaço de tempo.

Entretanto ao se analisar um período tão grande (dois anos) qual seria o período (mês e ano) a ser utilizado para o cálculo do Giro dos Estoques? Para que se tenha uma resposta mais adequada, verificaramse três formas de calcular o Giro. Primeira: soma dos valores dos estoques *versus* a soma dos valores dos consumos no período (janeiro de 2009 a dezembro de 2011), Segunda: valor dos estoques no fim do último período (dezembro de 2011) *versus* a soma dos valores dos consumos (janeiro de 2009 a dezembro de 2011) e Terceiro: valor dos estoques mês a mês *versus* o valor dos consumos mês a mês (janeiro de 2009 a dezembro de 2011), classificação ABC do giro tomando por base o último mês do período (dezembro de 2011).

Em cada análise foi feita a Classificação ABC tomando por base o valor dos estoques, a referência é o mês de dezembro de 2011. Da classificação evidencia-se na análise os materiais CLASSE A.

Na Tabela 13, a análise compara situações similares: 1) Soma dos estoques versus a Soma dos consumos. Nesta análise verifica-se uma sobreposição dos valores, pois ao se considerar a soma caso um mesmo material esteja no mês subsequente terá o seu valor computado duas ou mais vezes. Mesmo assim calculou-se o giro e percebeu-se que o range de itens tende a aumentar.

Os materiais CLASSE A, Tabela 13, somados totalizam aproximadamente R\$ 76 milhões de reais e considerando os giros, identificados na última coluna a direita da mesma, fazem destes materiais um problema para os gestores de estoques porque tem alto giro e alto valor, representando 7,70% do consumo. Estes materiais ocupam espaços e seus custos de manutenção e oportunidade encarecem sua estadia, mesmo em se tratando de materiais MRO da indústria do petróleo. Para estes materiais, o ideal é recebê-los o mais próximo possível do momento de suas respectivas aplicações ou certificar-se se

são ou não materiais estratégicos que devam ser mantidos nos estoques o que baixaria o giro e o capital imobilizado.

Tabela 13 – Giro dos materiais classe A do GM 40142101 na REVAP – considerando a

soma dos valores em estoques

NM	Descrição do NM	Soma dos Estoques no Período (Valor)		Soma do Consumido no período (Valor)		Classifi	Giro	
10000037	Tubo AC 5L-B PSL-1 c/c 20"x0.750"	R\$	23.976.377,87	R\$	39.536,11	23,46%	23,46% Classe A	0,00
10378846	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.280	R\$	12.293.562,48	R\$	1.802.289,24	12,03%	35,48% Classe A	0,15
10000077	Tubo AC 5L-B PSL-1 c/c 16"x0.250" Sch10	R\$	4.894.016,16	R\$	792.192,81	4,79%	40,27% Classe A	0,16
10000078	Tubo AC 5L-B PSL-1 c/c 18"x0.250" Sch10	R\$	4.620.921,16	R\$	432.995,17	4,52%	44,79% Classe A	0,09
10000156	Tubo AC A106-B s/c 10"x0.365" STD Sch40	R\$	4.457.991,27	R\$	571.378,88	4,36%	49,16% Classe A	0,13
10826945	Tubo AC 5L-B PSL-1 c/c 36"x0.625" Sch30	R\$	3.996.954,36	R\$	-	3,91%	53,07% Classe A	0,00
10326236	Tubo AC 5L-B PSL-1 c/c 24"x0.250" Sch10	R\$	3.434.341,70	R\$	303.736,48	3,36%	56,43% Classe A	0,09
10365337	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.322	R\$	3.215.759,13	R\$	304.761,73	3,15%	59,57% Classe A	0,09
10000062	Tubo AC 5L-B PSL-1 s/c 10"x0.250" Sch20	R\$	2.862.074,49	R\$	327.069,83	2,80%	62,37% Classe A	0,11
10391684	Tubo AC ET-AB-RE/ES/TEE-200 s/c 10"x0.25	R\$	2.313.244,69	R\$	229.842,25	2,26%	64,63% Classe A	0,10
10000399	Tubo AC 5L-B PSL-1 s/c 1/2"x0.188" Sch16	R\$	2.290.078,33	R\$	68.426,62	2,24%	66,88% Classe A	0,03
10365308	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3"x0.216	R\$	1.922.189,81	R\$	402.307,77	1,88%	68,76% Classe A	0,21
10000057	Tubo AC 5L-B PSL-1 s/c 6"x0.719" Sch160	R\$	1.737.332,93	R\$	9.433,27	1,70%	70,46% Classe A	0,01
10387302	Tubo AC ET-AB-RE/ES/TEE-200 s/c 4"x0.237	R\$	1.665.085,30	R\$	343.335,92	1,63%	72,08% Classe A	0,21
10390568	Tubo AC ET-AB-RE/ES/TEE-200 s/c 3/4"x0.2	R\$	1.322.585,56	R\$	76.351,35	1,29%	73,38% Classe A	0,06
10000067	Tubo AC 5L-B PSL-1 s/c 12"x0.250" Sch20	R\$	1.239.713,90	R\$	165.147,29	1,21%	74,59% Classe A	0,13

Fonte: O autor, (2012).

Na Tabela 14, onde se comparam 2) estoques do último mês do período em análise (dezembro de 2011) versus a soma dos consumos, ainda se tem uma visão conservadora de manutenção dos estoques, pois com a soma dos consumos obriga-se a manutenção de uma range maior para atender a esses consumos.

Ainda que haja uma redução dos itens CLASSE A, o giro aumenta para alguns casos em outros o giro é zero. Contudo, verifica-se que não se tratam dos mesmos materiais, pois a classificação ABC tem fonte distinta da primeira análise. Os custos de manutenção em estoques e de oportunidade destes materiais em relação ao item 1 são baixos, mas os giros inferiores fazem deste vilões de custos, pela tempo que permanecerão nos estoques, necessitando, por parte do gestor, uma estratégia em conjunto com os usuários de utilização próximo do recebimento e no caso de serem estratégicos verificar a possibilidade de compartilhar com outras unidades os estoques de segurança do mesmo.

Tabela 14 – Giro dos materiais classe A do GM 40142101 na REVAP – considerando a movimentação do último período em análise

	HOVIIIICI	ilação do d	<i>.</i> 1111111		Ρ	CIIC	Juu	CIII		ana	1130
	NM	Descrição do NM		12.2011		Soma do Consumido no período (Valor)		Classificação ABC (Valor dos Estoques)			Giro
ĺ	10779332	Tubo AC ET-AB-RE/ES/TEE-200 s/c 12"x0.29	5	R\$	410.530,33	R\$	-	38,64%	38,64%	Classe A	0,00
	10826945	Tubo AC 5L-B PSL-1 c/c 36"x0.625" Sch30		R\$	111.026,51	R\$	-	10,45%	49,09%	Classe A	0,00
	10365337	Tubo AC ET-AB-RE/ES/TEE-200 s/c 8"x0.322	2	R\$	94.753,11	R\$	304.761,73	8,92%	58,01%	Classe A	3,22
ĺ	10524172	Tubo AC A671-CC60-22 c/c 20"x0.500" XS S		R\$	49.000,00	R\$	108.333,01	4,61%	62,62%	Classe A	2,21
	10000399	Tubo AC 5L-B PSL-1 s/c 1/2"x0.188" Sch16		R\$	48.001,05	R\$	68.426,62	4,52%	67,14%	Classe A	1,43
	10227128	Tubo AC 5L-B PSL-1 c/c 32"x0.250"		R\$	47.962,51	R\$		4,51%	71,65%	Classe A	0,00
	10378846	Tubo AC ET-AB-RE/ES/TEE-200 s/c 6"x0.280	0	R\$	42.274,94	R\$	1.802.289,24	3,98%	75,63%	Classe A	42,63

Fonte: O autor, (2012).

Na Tabela 15, calculou-se o **3) giro dos estoques mês a mês**, valor consumido pelo valor do estoque no mesmo mês. São 211 materiais e destes 44 itens estão com giro acima de zero em dezembro de 2011, ou seja, com consumo. Os materiais sem consumo totalizam 167 itens e se devidamente eliminados ou cedidos a outras Unidades (saneados) obteríamos uma redução na ordem de 79,14% dos materiais em estoque.

Tabela 15 – Giro dos materiais classe A do GM 40142101 na REVAP – considerando a movimentação mês a mês

Mês e Ano /										
Material (NM)	10000137	10000122	10000009	10000058	10000077	10179795	10391788	10387302	10390611	10390640
Jan09	0,015	0,128	0,000	0,001	0,017	0,000	0,000	0,018	0,000	0,000
Fev09	0,000	0,000	0,000	0,000	0,001	0,000	3,644	0,013	0,000	0,026
Mar09	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,014	0,000	0,002
Abr09	0,000	0,014	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,004
Mai09	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,137	0,001	0,000
Jun09	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Jul09	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,026	0,026
Ago09	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,037	0,000	0,008
Set09	2,545	0,000	0,000	0,000	0,000	0,000	0,000	0,033	1,042	0,460
Out09	0,023	0,000	0,000	0,448	0,000	0,000	0,000	0,056	0,000	0,035
Nov09	0,005	0,000	0,000	943,191	0,000	0,000	0,000	0,000	0,007	0,000
Dez09	0,000	0,061	0,000	0,000	0,000	0,000	1,016	0,173	0,007	0,000
Jan10	0,002	0,002	0,000	0,000	0,000	0,000	0,000	0,054	0,000	0,000
Fev10	0,255	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,001
Mar10	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,193	0,258	0,000
Abr10	0,000	1,205	0,000	0,000	0,000	0,000	0,000	0,065	2,591	0,003
Mai10	0,000	0,468	0,000	0,000	0,000	0,000	0,000	0,000	0,242	0,000
Jun10	0,000	0,228	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Jul10	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,315	0,000	0,049
Ago10	0,006	2,678	0,000	0,000	0,000	0,000	0,000	1,663	0,804	0,009
Set10	0,000	0,739	0,000	0,000	0,000	0,000	0,057	0,608	1,336	0,000
Out10	0,000	4,189	0,000	0,006	0,005	0,003	1,244	6,198	0,218	0,000
Nov10	0,000	0,000	0,000	5,840	0,009	0,007	3,899	0,004	0,027	0,000
Dez10	0,000	1,469	423,567	0,000	0,840	0,003	0,127	0,445	0,334	0,000
Jan11	0,000	2,562	0,000	0,025	0,000	0,000	0,000	0,616	0,000	0,000
Fev11	0,000	0,226	0,000	0,000	1,353	0,000	0,000	1,532	1,511	0,000
Mar11	520,633	0,000	0,000	0,000	270,525	0,000	0,000	136,740	2,740	0,000
Abr11	0,010	0,074	0,314	0,003	0,000	0,000	0,014	0,018	0,098	0,000
Mai11	134,663	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,064	0,000
Jun11	0,000	0,043	0,000	0,000	0,487	0,000	0,000	0,079	0,105	0,000
Jul11	0,000	0,000	0,000	0,084	0,000	0,000	0,000	0,000	3,588	0,000
Ago11	0,000	1,604	0,000	0,000	0,000	0,000	0,000	0,845	4,581	1,785
Set11	0,000	4,812	0,000	7,094	0,000	0,000	0,000	0,008	0,000	0,175
Out11	0,000	5,391	0,000	0,000	0,000	0,596	0,000	0,025	0,729	0,379
Nov11	0,000	0,445	0,000	0,000	0,000	1,916	0,314	0,455	0,232	1,239
Dez11	176,907	69,886	55,019	50,814	37,896	15,410	7,624	4,183	3,483	3,438
CLASSE	CLASSE A	CLASSE A	CLASSE A	CLASSE B						
PERCENTUAL	39,31%	15,53%	12,22%	11,29%	8,42%	3,42%	1,69%	0,93%	0,77%	0,76%
ACUMULADO	39,31%	54,83%	67,06%	78,35%	86,77%	90,19%	91,89%	92,82%	93,59%	94,35%

Fonte: O autor, (2012).

Na classificação ABC, Tabela 15, obtemos três itens Classe A e sete itens Classe B, portanto 4,74% (somados Classe A e B) dos materiais deste Grupo de Mercadorias tem grande relevância do ponto de vista do consumo. Nota-se a redução dos itens CLASSE A em relação aos materiais no item 1, bem como uma identificação maior dos materiais das duas análises.

Estes materiais possuem giro alto que varia de 176,9 a 3,44, Tabela 16, portanto materiais necessários nas operações. Para estes materiais, faz-se necessário estudar a redução dos pedidos com aumento do nível de serviço a fim de encontrar o ponto ótimo de custos de pedido *versus* custos de manutenção nos estoques. Isso obriga rever os parâmetros de estoques de segurança para garantir um maior período sem receber os materiais em questão até que a próxima compra chegue, bem como estudar a reposição destes pelo método do lote econômico de compras.

Tabela 16 – Giro dos matérias classe A com base no último mês da análise

Material	GIRO - Dez11	CLASSE	PERCENTUAL	ACUMULADO
10000137	176,907	CLASSE A	39,31%	39,31%
10000122	69,886	CLASSE A	15,53%	54,83%
10000009	55,019	CLASSE A	12,22%	67,06%
10000058	50,814	CLASSE B	11,29%	78,35%
10000077	37,896	CLASSE B	8,42%	86,77%
10179795	15,410	CLASSE B	3,42%	90,19%
10391788	7,624	CLASSE B	1,69%	91,89%
10387302	4,183	CLASSE B	0,93%	92,82%
10390611	3,483	CLASSE B	0,77%	93,59%
10390640	3,438	CLASSE B	0,76%	94,35%

Fonte: O autor, (2012).

Ao analisar os valores destes materiais, verifica-se que priorizar em função do giro do último mês em relação ao primeiro mês do mesmo período potencializa-se a redução dos custos.

Na medida em que se obtém o ganho supramencionado, comparando janeiro/09 com dezembro/11, a estratégia para assegurar confiabilidade com materiais CLASSE A e B é aumentar o nível de serviço

e estoques de segurança, permitindo pedidos com maior quantidade de materiais e mais espaçados na escala de tempo das reposições, fazendo deste material uma demanda dependente e planejada.

Desta análise pode-se afirmar que os estoques devem ser parametrizados pelo giro e gerenciados pelo itens A e B deixando para itens C somente o que for estratégico para que se tenha uma economia e melhor aplicação dos recursos. Cabe ressaltar que trata-se de apenas um Grupo de Mercadoria.

O giro dos estoques para materiais do tipo MRO (Manutenção, Reparo e Operação) tende a ser menor que itens de consumo, exatamente por sua natureza, são materiais da indústria metal mecânica de baixa rotatividade, pois espera-se chegar próximo à fadiga deste tipo de material para que haja a troca ou o descarte do mesmo.

Conclui-se que giro é um excelente indicador que norteia as políticas de gestão de estoque e possibilita ao gestor uma leitura do comportamento dos seus estoques, mas há que se salientar a premissa de que o banco de dados deva estar organizado e sem sujeiras².

4.2.4 Cobertura

Cobertura (em dias) = Número de dias do período em estudo / Giro

(2.2.11)

A cobertura é calculada com base no giro. Portanto, se o giro é alto quer dizer que o indicador de cobertura é pequeno e se o giro é baixo a cobertura é grande, pois são inversamente proporcionais.

A cobertura dá ao cliente interno e ao pessoal de estoques a visão de quanto tempo ainda terá um determinado material e permite um

² Se refere a termo utilizado, no jargão da tecnologia da informação – TI -, para informações que não fazem parte do banco de dados em que estão inseridos devido a erro de compilação por parte dos usuários. A sujeira dificulta a análise das informações contidas ou inviabiliza estudos.

planejamento eficaz se o *lead time – LT* de aquisição do NM for conhecido. Permite-se que o gestor dos estoques faça as novas aquisições com horizontes de entrada melhor definidos. O objetivo é o de evitar o custo da falta.

Tanto os indicadores de giro como e de cobertura são calculados pelo SAP Petrobras; considera-se o consumo dos 13 últimos meses, mas não se consegue fazer uma gestão de curto prazo (menor que 13 meses) o que permitiria melhor performance na gestão dos estoques pelas áreas de Suprimentos.

Observa-se que a REVAP, a exemplo das áreas de Abastecimento, tem reduzido seus estoques de materiais, minimizando os custos de manutenção dos estoques e por conseguinte reduzindo o custo de oportunidade.

Assim como o Giro, a Cobertura é um indicador que permite planejamento por parte dos usuários de suprimentos e do gestor dos estoques, mas há que se ter uma parceria destes atores para um planejamento de estoques aderente a operação sem onerar os custos da Companhia.

4.2.5 ROA

ROA – Retorno dos ativos =

Lucros Recebidos / ativos empregados

(2.2.12)

Na Petrobras, como em muitas empresas, a perspectiva contábil não contempla os custos logísticos e a verificação permanente dos custos de se manter os estoques, custos operacionais, os custos de estoques (valor da soma dos materiais em estoques) não são apurados de forma corporativa. Cada área de negócio levanta seus custos para a gestão destes estoques. Este controle, na Petrobras, não significa que seja

reproduzido na otimização destes estoques, pois a cultura da pressão pelo custo da falta prevalece frente às necessidades de se reduzir custos até o presente.

Desta forma, não se pode utilizar este indicador como parâmetro até o momento. Faz-se necessário desenvolver uma ferramenta de controle dos custos para que se possa comparar estoques, seus custos e custo por metro quadrado a fim de comparar as diversas Unidades Operacionais que detêm estoques.

4.3 Indicadores Corporativos

4.3.1 IEEP - REVAP

Índice de Evolução dos Estoques = Valor Contábil dos Estoques do mês atual / Valor dos Estoques do mês anterior

(2.2.13)

O IEEP é calculado para identificar a evolução dos estoques da Petrobras. Permite ao gestor dos estoques o acompanhamento do volume de material que está em estoque como também que este tome medidas de saneamento e identifique quais são os motivos do crescimento destes estoques.

Conclusões

No novo Planejamento Estratégico (2012-2016), há uma definição clara da Presidência da Petrobras de redução dos estoques de materiais, dos custos logísticos e de transporte, pois foi criado um programa especifico para isso, o PROCOP – Programa de Otimização de Custos Operacionais.

Portanto, há que se entender o *Supply Chain Management* para que se possa aplicar o conceito de aprimoramento contínuo (*Kaizen*), e assim evitar as perdas (*LEAN PRODUCTION*) ao longo da produção. Isso só é possível com um planejamento da cadeia logística onde se acompanhe cada processo e as necessidades de materiais requeridas que podem ser apoiadas nos Planejamento de Recursos Materiais (MRP), bem como nos indicadores associados ao processo logístico de suprimentos de materiais.

Com apoio dos indicadores, poderá a Companhia identificar os potenciais ganhos com a otimização de estoques e dos custos logísticos que poderão ser monitorados via indicadores e parâmetros de cada área de negócio.

Não se pode dizer que um indicador está correto, mas sim se este é aderente à métrica que se deseja controlar. No Capítulo 3, Tabela 8, identifica-se alguns destes indicadores que estão adequados à indústria do petróleo e o parâmetro para verificar se é alto ou não o volume de materiais em estoque, o que pode ser facilmente verificado como o indicador de Giro dos Estoques. Efetuando o cálculo do giro, pode-se chegar a conclusões de volume de estoques como tratado anteriormente e também se o material ora analisado é excedente, pois o Giro do Estoques é calculado com base no consumo dos materiais em estoques sobre os materiais existentes em estoques. Todo giro abaixo de 1 em mais de um *Lead Time LT (tempo de ressuprimento do mesmo)*, evidencia que o referido material é excedente a exceção dos matérias denominados

estratégicos (ZS), pois sequer consegue-se utilizá-los no tempo em que uma nova reposição é realizada. Na Petrobras, os materiais denominados excedentes são aqueles acima de dois LT.

Contudo, os parâmetros de comparação de cada um dos indicadores é uma referência difícil de se obter á exceção dos controlados pela revista CAPS citada na seção 2, pois a mesma possui alguns estudos destes indicadores na industria do petróleo, bem como em outras empresas de importância mundial. Para tanto, há que se trocar informações para recebê-las o que no mercado extremamente competitivo como o do petróleo pode não ser uma boa estratégia, assim parte de conceitos de materiais tipo MRO de outras empresas com a metal mecânica e outras.

Para calcular os indicadores citados, esbarra-se na problemática da informação correta. Requisitos mínimos de qualidade são necessários e no que concerne a sua extração os dados podem distorcer os parâmetros na otimização dos estoques. Como conseguir a confiabilidade requerida?

Para isso, será necessário desenvolver ferramentas de apoio à decisão baseadas no SAP Petrobras que tragam os dados para o efetivo cálculo dos indicadores a fim de se monitorar e comparar com empresas do segmento, via CAPS, e sua performance.

De posse de informações sobre o giro e a cobertura, reavaliar os parâmetros de MRP dos materiais será uma tarefa mais amigável desde que definido um nível de serviço estratégico pela Petrobras em cada área de negócio. Para iniciar esta tarefa de redefinição dos perfis MRP restringir a análise para itens CLASSE A será uma boa medida, pois serão tratadas primeiramente os materiais que mais impactam o fluxo de caixa da Companhia.

Entretanto algumas medidas são prementes para que se obtenham dados corretos de cada indicador:

- 1. **Acurácia** requer o desenvolvimento de uma ferramenta de BI, por exemplo, que mantenha a informação da primeira contagem e em quais materiais estes erros aconteceram para que se possa desenvolver uma ação corretiva para minimizar as diferenças e manter a política de *Kaizen*;
- 2. **Giro** identificou-se que o indicador requer melhorias na fórmula do SAP, via BI, para que o gestor tenha dados mais apurados, pois estes dados refletirão na política de MRP definida por ele para a reposição de materiais CLASSE A, a exemplo dos cálculos realizados no Capítulo 4;
- 3. **Cobertura** está associada ao Giro e a reconfiguração da fórmula é o caminho para que os gerentes de estoques verifiquem em quanto tempo terão de fazer novos pedidos, mas isso também requer a revisão da fórmula no BI;
- 4. **Nível de serviço** é um indicador que não se tem parametrizado na Companhia e o risco foi evidenciado no gráfico 2 do capítulo 4, quando se falou em *Fill Rate.* Aumentar o nível de serviço significa aumentar o comprometimento dos recursos das empresas, por isso a necessidade de defini-lo com meta especifica por área de negócio;
- 5. **ROA** ou retorno sobre ativos requer um desenvolvimento com informações financeiras do SAP, pois além de extrair os dados há que se incluir os ganhos associados as operações dos ativos em estoques o que hoje não ocorre.

A sinalização de que a gestão dos estoques da Petrobras não é adequada se dá pelo número de pedidos em atraso, alto investimento em inventários, pela falta constante de espaço para armazenamento e pela grande quantidade de itens obsoletos.

A eliminação do desperdício e a elevação da qualidade irão assegurar uma abordagem integrada de sistemas, de tal sorte que a logística não se tornará um conjunto de atividades fragmentadas e

desordenadas, permitindo uma integração externa com interface entre as áreas e com otimização dos estoques.

Nos estudos de Waters (2003) verifica-se que o custo da *CMJ Constructors Ltd*, para manter seus estoques é de 20% ao ano, ao projetarmos este dado para a Petrobras e com o devido planejamento e acompanhamento de indicadores a Petrobras terá condições de reduzir o valor dos estoques.

Tomando esta análise como base, a área de Abastecimento conseguiria reduzir seus estoques em 30,17%, na REVAP; esta redução dos materiais representa 14,42% no Abastecimento e 63,21% no GM estudado o que melhoraria sua performance utilizando-se os indicadores de mercado identificados neste estudo.

Assim, verifica-se nas informações coletadas pelas áreas de negócio da Petrobras que o controle dos estoques é uma missão que requer identificar as demandas, sendo que os indicadores contribuem na gestão para a Política de Disciplina de Capital.

Os indicadores devem ser representados pelo seu modelo matemático, periodicidade e método de coleta, e devem possuir objetivos claros e metas pré-definidas.

Para dar continuidade a este estudo sugere-se:

- o aprofundamento nas métricas de previsão da demanda de materiais para garantir e escalonar a produção
- avançar nos estudos dos MRP, pois a partir delas é que se desenharão os estoques das empresas
- estudar as demandas futuras que nortearão os gestores de estoques para melhorarem a performance de seus estoques.

Referências Bibliográficas

AHUJA, Revindra K; MAGNANTI, Thomas L.; ORLIN, James B. **Network flows**: theory, algorithms, and applications. [S.I.]: Prentice Hall, 1993.

AROZO, R. **Monitoramento de desempenho na gestão de estoque**. Rio de Janeiro: Instituto de Logística e Supply Chain, 2002. Disponível em:http://www.ilos.com.br/site/index.php?option=com_content&task=view&id=1110&Itemid=74. Acesso em: 01 dez. 2010.

ASHENBAUM, Bryan. **Optimizing MRO inventory management**. [S.I.]: Center for Estrategic Supply Research CAPS, 2005. 24p.

ASSOCIACAO BRASILEIRA DE CONTROLE DA QUALIDADE. **Indicadores, objetivos e metas para qualidade**. São Bernardo do Campo, SP, c2012. Disponível em: http://www.abcq.org.br/OBJ/PrintProdView.asp?idProduct=13. Acesso em: 18 out. 2012.

AXSÄLTER, Sven. **Inventory control**. Springer, New York, USA. 2006.332p.

BALLOU, Ronald H. **Gerenciamento da cadeia de suprimentos/logística empresarial.** Porto Alegre. Bookman, 2006. 616p.

BERTAGLIA, Paulo Roberto. Logística e gerenciamento da cadeia de abastecimento. São Paulo. Saraiva, 2003. 509p.

BOGDAN, R.; BIKLEN, S. Investigação qualitativa em educação. Porto: Porto Editora, 1994.

CHASE, R. B.; JACOBS, R. F.; AQUILANO, N. J. **Administração da produção para vantagem competitiv**a. Porto Alegre: Bookman, 2006.

CRISTOPHER, Martin. Logística e gerenciamento da cadeia de suprimentos. Tradução de Francisco Roque Monteiro Leite. São Paulo: Pioneira, 2002. 240p.

FARAH JR, Moisés. Os desafios da logística e os centros de distribuição física. [S.l.: s.n.], [20--].

FERREIRA FILHO, Virgílio José Martins. **Gestão de estoques**. Rio de Janeiro: COPPE e EP / UFRJ, 2010.

FIGUEIREDO, Edmar M. Modelo de centralização de estoques para a logística de suprimento da exploração e produção da Petrobras 000f. 2001. Dissertação (Mestrado em Logística) — Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2001.

FRIEDMAN, Thomas L. **Lexus e a oliveira entendendo a globalização**. São Paulo: Objetiva Editora, 1999. 476p.

G1. Economia. 18 out. 2012. Disponível em: <g1.globo.com/economia>. Acesso em: 18 out. 2012.

GARCIA, Eduardo Saggioro et al. **Gestão de estoques**: otimizando a logística e a cadeia de suprimentos. Rio de Janeiro. E-papers Serviços Editoriais, 2006. 143p.

GASNIER, Daniel Georges. **A dinâmica dos estoques**. São Paulo: Instituto IMAM, 2002. 316p.

HAGUENAUER, Lia. **Competitividade**: conceitos e medidas: uma resenha da bibliografia recente com ênfase no caso brasileiro. Rio de Janeiro: IEA: UFRJ, 1989. 21p.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **PIB do Brasil em 2011**. [S.I.]: Sua Pesquisa.com, [2012?]. Disponível em: http://www.suapesquisa.com/economia/pib_brasil.htm. Acesso em: 26 maio 2012.

JORGE, Ciro Magalhães de Melo. **Planejamento de redes logísticas via simulação**: analisando fatores determinantes das decisões de localização e centralização da distribuição. Rio de Janeiro: COPPEAD: UFRJ, 2008.

LAMBERT, Douglas; STOCK, James; VANTINE, J.G. **Administração estratégica da logística.** São Paulo. 2006. 911p.

LUSTOSA, Leonardo et al. **Planejamento e controle da produção**. Rio de Janeiro: Eslsevier, 2008. 357p.

PETROBRAS. Comunicação. Rio de Janeiro, 2011.

_____. MATERIAIS. **Manual de suprimento de materiais**. Rio de Janeiro. 2004.

MARTINS, Petrônio G; ALT, Paulo R C. **Administração de materiais e recursos patrimoniais**. São Paulo. Saraiva: 2003, 346p.

MARTEL, Alain; VIEIRA, Darli Rodrigues. **Análise e projeto de redes logísticas**. [S.I.]: Editora Saraiva, [20--].

MEDEIROS, Francisco. **Gestão de estoques de materiais e** equipamentos para manutenção, reparo e operações na indústria intensiva em capital. [S.l.: s.n.], 2004.

MEREDITH, J. R. **The management of operations**: a conceptual empahasis. 4. ed. New York: John Wiley & Sons, 1992. 800p.

MOREIRA, Daniel A. **Administração da produção e operações**. 4. ed. São Paulo: Pioneira, 1999. 620p.

PETROBRAS cria programa de redução de custos. **Veja**, São Paulo,18 out. 2012a. Disponível em: http://veja.abril.com.br/noticia/economia/petrobras-cria-programa-de-reducao-de-custos. Acesso em: 18 out. 2012.

PETROBRAS. Comunicação. **Histórico sobre a REVAP**. Rio de Janeiro, 2012c.

PETROBRAS. AB-RE/SOP/SU. **Identidade dos indicadores do suprimento do REFINO**. Rio de Janeiro, [20--].

PETROBRAS. E&P/CORP/CBS. **EP-1E1-00042-A**: identidade dos indicadores das atividades da cadeia de atendimento: contratação de bens e serviços, gestão de estoques e armazenagem. Rio de Janeiro, 20 jun. 2012b.

RITZMAN, L; KRAJEWSKI, L. J. **Administração da produção e operações.** São Paulo. Prentice Hall. 2004.

SLACK, N.; CHAMBERS, S.; JOHNSTON, R. **Administração da produção**. 2. ed. São Paulo: Atlas, 2002.

TOLEDO, Luiz Gustavo Chaves de. **Aplicação dos modelos clássicos de estoques em uma rede de varejo supermercadista**. 2011. 33p.Dissertação (Mestrado) – Faculdade de Engenharia, Universidade Estadual Paulista, Bauru. 2011.

VIAGI, Arcione Ferreira. Proposta de um método de gestão da cadeia de suprimentos com suporte de tecnologia da informação e dos princípios da manufatura enxuta. 2011. Dissertação (Mestrado) Instituto Tecnológico Aeroespacial (ITA), [S.I.], 2011.

WANKE, Peter. Aspectos fundamentais do problema de localização de instalações em redes logísticas. [S.l.: s.n.], 2003.

	Formalizand	o uma	política	de	estoques	para	а	cadeia	de
suprime	entos . [S.l.: s.n	.], 10 n	ov. 1999.						

WATERS, Donald. **Inventory control and management**. 2. ed. Chichester: Wiley, 2003. 391p.

WELLINGTON, Patricia. Estratégias KAIZEN para o atendimento ao cliente. [S.I.]: Educatr,[20--].